This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sbcid

Description: An identity theorem for substitution. See sbid . (Contributed by Mario Carneiro, 18-Feb-2017)

Ref Expression
Assertion sbcid
|- ( [. x / x ]. ph <-> ph )

Proof

Step Hyp Ref Expression
1 sbsbc
 |-  ( [ x / x ] ph <-> [. x / x ]. ph )
2 sbid
 |-  ( [ x / x ] ph <-> ph )
3 1 2 bitr3i
 |-  ( [. x / x ]. ph <-> ph )