This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for a set of the form { x e. ~P A | ph } to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015) (Revised by AV, 10-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfild.1 | |- ( ph -> ( x e. F <-> ( x C_ A /\ ps ) ) ) |
|
| isfild.2 | |- ( ph -> A e. V ) |
||
| isfild.3 | |- ( ph -> [. A / x ]. ps ) |
||
| isfild.4 | |- ( ph -> -. [. (/) / x ]. ps ) |
||
| isfild.5 | |- ( ( ph /\ y C_ A /\ z C_ y ) -> ( [. z / x ]. ps -> [. y / x ]. ps ) ) |
||
| isfild.6 | |- ( ( ph /\ y C_ A /\ z C_ A ) -> ( ( [. y / x ]. ps /\ [. z / x ]. ps ) -> [. ( y i^i z ) / x ]. ps ) ) |
||
| Assertion | isfild | |- ( ph -> F e. ( Fil ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfild.1 | |- ( ph -> ( x e. F <-> ( x C_ A /\ ps ) ) ) |
|
| 2 | isfild.2 | |- ( ph -> A e. V ) |
|
| 3 | isfild.3 | |- ( ph -> [. A / x ]. ps ) |
|
| 4 | isfild.4 | |- ( ph -> -. [. (/) / x ]. ps ) |
|
| 5 | isfild.5 | |- ( ( ph /\ y C_ A /\ z C_ y ) -> ( [. z / x ]. ps -> [. y / x ]. ps ) ) |
|
| 6 | isfild.6 | |- ( ( ph /\ y C_ A /\ z C_ A ) -> ( ( [. y / x ]. ps /\ [. z / x ]. ps ) -> [. ( y i^i z ) / x ]. ps ) ) |
|
| 7 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 8 | 7 | biimpri | |- ( x C_ A -> x e. ~P A ) |
| 9 | 8 | adantr | |- ( ( x C_ A /\ ps ) -> x e. ~P A ) |
| 10 | 1 9 | biimtrdi | |- ( ph -> ( x e. F -> x e. ~P A ) ) |
| 11 | 10 | ssrdv | |- ( ph -> F C_ ~P A ) |
| 12 | 1 2 | isfildlem | |- ( ph -> ( (/) e. F <-> ( (/) C_ A /\ [. (/) / x ]. ps ) ) ) |
| 13 | simpr | |- ( ( (/) C_ A /\ [. (/) / x ]. ps ) -> [. (/) / x ]. ps ) |
|
| 14 | 12 13 | biimtrdi | |- ( ph -> ( (/) e. F -> [. (/) / x ]. ps ) ) |
| 15 | 4 14 | mtod | |- ( ph -> -. (/) e. F ) |
| 16 | ssid | |- A C_ A |
|
| 17 | 3 16 | jctil | |- ( ph -> ( A C_ A /\ [. A / x ]. ps ) ) |
| 18 | 1 2 | isfildlem | |- ( ph -> ( A e. F <-> ( A C_ A /\ [. A / x ]. ps ) ) ) |
| 19 | 17 18 | mpbird | |- ( ph -> A e. F ) |
| 20 | 11 15 19 | 3jca | |- ( ph -> ( F C_ ~P A /\ -. (/) e. F /\ A e. F ) ) |
| 21 | elpwi | |- ( y e. ~P A -> y C_ A ) |
|
| 22 | simp2 | |- ( ( ph /\ y C_ A /\ z C_ y ) -> y C_ A ) |
|
| 23 | 5 22 | jctild | |- ( ( ph /\ y C_ A /\ z C_ y ) -> ( [. z / x ]. ps -> ( y C_ A /\ [. y / x ]. ps ) ) ) |
| 24 | 23 | adantld | |- ( ( ph /\ y C_ A /\ z C_ y ) -> ( ( z C_ A /\ [. z / x ]. ps ) -> ( y C_ A /\ [. y / x ]. ps ) ) ) |
| 25 | 1 2 | isfildlem | |- ( ph -> ( z e. F <-> ( z C_ A /\ [. z / x ]. ps ) ) ) |
| 26 | 25 | 3ad2ant1 | |- ( ( ph /\ y C_ A /\ z C_ y ) -> ( z e. F <-> ( z C_ A /\ [. z / x ]. ps ) ) ) |
| 27 | 1 2 | isfildlem | |- ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) |
| 28 | 27 | 3ad2ant1 | |- ( ( ph /\ y C_ A /\ z C_ y ) -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) |
| 29 | 24 26 28 | 3imtr4d | |- ( ( ph /\ y C_ A /\ z C_ y ) -> ( z e. F -> y e. F ) ) |
| 30 | 29 | 3expa | |- ( ( ( ph /\ y C_ A ) /\ z C_ y ) -> ( z e. F -> y e. F ) ) |
| 31 | 30 | impancom | |- ( ( ( ph /\ y C_ A ) /\ z e. F ) -> ( z C_ y -> y e. F ) ) |
| 32 | 31 | rexlimdva | |- ( ( ph /\ y C_ A ) -> ( E. z e. F z C_ y -> y e. F ) ) |
| 33 | 32 | ex | |- ( ph -> ( y C_ A -> ( E. z e. F z C_ y -> y e. F ) ) ) |
| 34 | 21 33 | syl5 | |- ( ph -> ( y e. ~P A -> ( E. z e. F z C_ y -> y e. F ) ) ) |
| 35 | 34 | ralrimiv | |- ( ph -> A. y e. ~P A ( E. z e. F z C_ y -> y e. F ) ) |
| 36 | ssinss1 | |- ( y C_ A -> ( y i^i z ) C_ A ) |
|
| 37 | 36 | ad2antrr | |- ( ( ( y C_ A /\ [. y / x ]. ps ) /\ ( z C_ A /\ [. z / x ]. ps ) ) -> ( y i^i z ) C_ A ) |
| 38 | 37 | a1i | |- ( ph -> ( ( ( y C_ A /\ [. y / x ]. ps ) /\ ( z C_ A /\ [. z / x ]. ps ) ) -> ( y i^i z ) C_ A ) ) |
| 39 | an4 | |- ( ( ( y C_ A /\ [. y / x ]. ps ) /\ ( z C_ A /\ [. z / x ]. ps ) ) <-> ( ( y C_ A /\ z C_ A ) /\ ( [. y / x ]. ps /\ [. z / x ]. ps ) ) ) |
|
| 40 | 6 | 3expb | |- ( ( ph /\ ( y C_ A /\ z C_ A ) ) -> ( ( [. y / x ]. ps /\ [. z / x ]. ps ) -> [. ( y i^i z ) / x ]. ps ) ) |
| 41 | 40 | expimpd | |- ( ph -> ( ( ( y C_ A /\ z C_ A ) /\ ( [. y / x ]. ps /\ [. z / x ]. ps ) ) -> [. ( y i^i z ) / x ]. ps ) ) |
| 42 | 39 41 | biimtrid | |- ( ph -> ( ( ( y C_ A /\ [. y / x ]. ps ) /\ ( z C_ A /\ [. z / x ]. ps ) ) -> [. ( y i^i z ) / x ]. ps ) ) |
| 43 | 38 42 | jcad | |- ( ph -> ( ( ( y C_ A /\ [. y / x ]. ps ) /\ ( z C_ A /\ [. z / x ]. ps ) ) -> ( ( y i^i z ) C_ A /\ [. ( y i^i z ) / x ]. ps ) ) ) |
| 44 | 27 25 | anbi12d | |- ( ph -> ( ( y e. F /\ z e. F ) <-> ( ( y C_ A /\ [. y / x ]. ps ) /\ ( z C_ A /\ [. z / x ]. ps ) ) ) ) |
| 45 | 1 2 | isfildlem | |- ( ph -> ( ( y i^i z ) e. F <-> ( ( y i^i z ) C_ A /\ [. ( y i^i z ) / x ]. ps ) ) ) |
| 46 | 43 44 45 | 3imtr4d | |- ( ph -> ( ( y e. F /\ z e. F ) -> ( y i^i z ) e. F ) ) |
| 47 | 46 | ralrimivv | |- ( ph -> A. y e. F A. z e. F ( y i^i z ) e. F ) |
| 48 | isfil2 | |- ( F e. ( Fil ` A ) <-> ( ( F C_ ~P A /\ -. (/) e. F /\ A e. F ) /\ A. y e. ~P A ( E. z e. F z C_ y -> y e. F ) /\ A. y e. F A. z e. F ( y i^i z ) e. F ) ) |
|
| 49 | 20 35 47 48 | syl3anbrc | |- ( ph -> F e. ( Fil ` A ) ) |