This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbasweak | |- ( ( F e. ( fBas ` X ) /\ F C_ ~P Y /\ Y e. V ) -> F e. ( fBas ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( F e. ( fBas ` X ) /\ F C_ ~P Y /\ Y e. V ) -> F C_ ~P Y ) |
|
| 2 | simp1 | |- ( ( F e. ( fBas ` X ) /\ F C_ ~P Y /\ Y e. V ) -> F e. ( fBas ` X ) ) |
|
| 3 | elfvdm | |- ( F e. ( fBas ` X ) -> X e. dom fBas ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( F e. ( fBas ` X ) /\ F C_ ~P Y /\ Y e. V ) -> X e. dom fBas ) |
| 5 | isfbas | |- ( X e. dom fBas -> ( F e. ( fBas ` X ) <-> ( F C_ ~P X /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F ( F i^i ~P ( x i^i y ) ) =/= (/) ) ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( F e. ( fBas ` X ) /\ F C_ ~P Y /\ Y e. V ) -> ( F e. ( fBas ` X ) <-> ( F C_ ~P X /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F ( F i^i ~P ( x i^i y ) ) =/= (/) ) ) ) ) |
| 7 | 2 6 | mpbid | |- ( ( F e. ( fBas ` X ) /\ F C_ ~P Y /\ Y e. V ) -> ( F C_ ~P X /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F ( F i^i ~P ( x i^i y ) ) =/= (/) ) ) ) |
| 8 | 7 | simprd | |- ( ( F e. ( fBas ` X ) /\ F C_ ~P Y /\ Y e. V ) -> ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F ( F i^i ~P ( x i^i y ) ) =/= (/) ) ) |
| 9 | isfbas | |- ( Y e. V -> ( F e. ( fBas ` Y ) <-> ( F C_ ~P Y /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F ( F i^i ~P ( x i^i y ) ) =/= (/) ) ) ) ) |
|
| 10 | 9 | 3ad2ant3 | |- ( ( F e. ( fBas ` X ) /\ F C_ ~P Y /\ Y e. V ) -> ( F e. ( fBas ` Y ) <-> ( F C_ ~P Y /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F ( F i^i ~P ( x i^i y ) ) =/= (/) ) ) ) ) |
| 11 | 1 8 10 | mpbir2and | |- ( ( F e. ( fBas ` X ) /\ F C_ ~P Y /\ Y e. V ) -> F e. ( fBas ` Y ) ) |