This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a number strictly between _pi and 2 x. _pi is negative. (Contributed by NM, 17-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinq34lt0t | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( sin ` A ) < 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> A e. RR ) |
|
| 2 | picn | |- _pi e. CC |
|
| 3 | 2 | addlidi | |- ( 0 + _pi ) = _pi |
| 4 | 3 | eqcomi | |- _pi = ( 0 + _pi ) |
| 5 | 2 | 2timesi | |- ( 2 x. _pi ) = ( _pi + _pi ) |
| 6 | 4 5 | oveq12i | |- ( _pi (,) ( 2 x. _pi ) ) = ( ( 0 + _pi ) (,) ( _pi + _pi ) ) |
| 7 | 6 | eleq2i | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) |
| 8 | pire | |- _pi e. RR |
|
| 9 | 0re | |- 0 e. RR |
|
| 10 | iooshf | |- ( ( ( A e. RR /\ _pi e. RR ) /\ ( 0 e. RR /\ _pi e. RR ) ) -> ( ( A - _pi ) e. ( 0 (,) _pi ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) ) |
|
| 11 | 9 8 10 | mpanr12 | |- ( ( A e. RR /\ _pi e. RR ) -> ( ( A - _pi ) e. ( 0 (,) _pi ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) ) |
| 12 | 8 11 | mpan2 | |- ( A e. RR -> ( ( A - _pi ) e. ( 0 (,) _pi ) <-> A e. ( ( 0 + _pi ) (,) ( _pi + _pi ) ) ) ) |
| 13 | 7 12 | bitr4id | |- ( A e. RR -> ( A e. ( _pi (,) ( 2 x. _pi ) ) <-> ( A - _pi ) e. ( 0 (,) _pi ) ) ) |
| 14 | 1 13 | syl | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( A e. ( _pi (,) ( 2 x. _pi ) ) <-> ( A - _pi ) e. ( 0 (,) _pi ) ) ) |
| 15 | 14 | ibi | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( A - _pi ) e. ( 0 (,) _pi ) ) |
| 16 | sinq12gt0 | |- ( ( A - _pi ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( A - _pi ) ) ) |
|
| 17 | 15 16 | syl | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> 0 < ( sin ` ( A - _pi ) ) ) |
| 18 | 1 | recnd | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> A e. CC ) |
| 19 | sinmpi | |- ( A e. CC -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
|
| 20 | 18 19 | syl | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
| 21 | 17 20 | breqtrd | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> 0 < -u ( sin ` A ) ) |
| 22 | 1 | resincld | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( sin ` A ) e. RR ) |
| 23 | 22 | lt0neg1d | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( ( sin ` A ) < 0 <-> 0 < -u ( sin ` A ) ) ) |
| 24 | 21 23 | mpbird | |- ( A e. ( _pi (,) ( 2 x. _pi ) ) -> ( sin ` A ) < 0 ) |