This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iooshf | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - B ) e. ( C (,) D ) <-> A e. ( ( C + B ) (,) ( D + B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltaddsub | |- ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C + B ) < A <-> C < ( A - B ) ) ) |
|
| 2 | 1 | 3com13 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + B ) < A <-> C < ( A - B ) ) ) |
| 3 | 2 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( C + B ) < A <-> C < ( A - B ) ) ) |
| 4 | 3 | adantrr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( C + B ) < A <-> C < ( A - B ) ) ) |
| 5 | ltsubadd | |- ( ( A e. RR /\ B e. RR /\ D e. RR ) -> ( ( A - B ) < D <-> A < ( D + B ) ) ) |
|
| 6 | 5 | bicomd | |- ( ( A e. RR /\ B e. RR /\ D e. RR ) -> ( A < ( D + B ) <-> ( A - B ) < D ) ) |
| 7 | 6 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ D e. RR ) -> ( A < ( D + B ) <-> ( A - B ) < D ) ) |
| 8 | 7 | adantrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A < ( D + B ) <-> ( A - B ) < D ) ) |
| 9 | 4 8 | anbi12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( C + B ) < A /\ A < ( D + B ) ) <-> ( C < ( A - B ) /\ ( A - B ) < D ) ) ) |
| 10 | readdcl | |- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
|
| 11 | 10 | rexrd | |- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR* ) |
| 12 | 11 | ad2ant2rl | |- ( ( ( C e. RR /\ D e. RR ) /\ ( A e. RR /\ B e. RR ) ) -> ( C + B ) e. RR* ) |
| 13 | readdcl | |- ( ( D e. RR /\ B e. RR ) -> ( D + B ) e. RR ) |
|
| 14 | 13 | rexrd | |- ( ( D e. RR /\ B e. RR ) -> ( D + B ) e. RR* ) |
| 15 | 14 | ad2ant2l | |- ( ( ( C e. RR /\ D e. RR ) /\ ( A e. RR /\ B e. RR ) ) -> ( D + B ) e. RR* ) |
| 16 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 17 | 16 | ad2antrl | |- ( ( ( C e. RR /\ D e. RR ) /\ ( A e. RR /\ B e. RR ) ) -> A e. RR* ) |
| 18 | elioo5 | |- ( ( ( C + B ) e. RR* /\ ( D + B ) e. RR* /\ A e. RR* ) -> ( A e. ( ( C + B ) (,) ( D + B ) ) <-> ( ( C + B ) < A /\ A < ( D + B ) ) ) ) |
|
| 19 | 12 15 17 18 | syl3anc | |- ( ( ( C e. RR /\ D e. RR ) /\ ( A e. RR /\ B e. RR ) ) -> ( A e. ( ( C + B ) (,) ( D + B ) ) <-> ( ( C + B ) < A /\ A < ( D + B ) ) ) ) |
| 20 | 19 | ancoms | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A e. ( ( C + B ) (,) ( D + B ) ) <-> ( ( C + B ) < A /\ A < ( D + B ) ) ) ) |
| 21 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 22 | 21 | ad2antrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR* ) |
| 23 | rexr | |- ( D e. RR -> D e. RR* ) |
|
| 24 | 23 | ad2antll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR* ) |
| 25 | resubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
|
| 26 | 25 | rexrd | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR* ) |
| 27 | 26 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A - B ) e. RR* ) |
| 28 | elioo5 | |- ( ( C e. RR* /\ D e. RR* /\ ( A - B ) e. RR* ) -> ( ( A - B ) e. ( C (,) D ) <-> ( C < ( A - B ) /\ ( A - B ) < D ) ) ) |
|
| 29 | 22 24 27 28 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - B ) e. ( C (,) D ) <-> ( C < ( A - B ) /\ ( A - B ) < D ) ) ) |
| 30 | 9 20 29 | 3bitr4rd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - B ) e. ( C (,) D ) <-> A e. ( ( C + B ) (,) ( D + B ) ) ) ) |