This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a number strictly between _pi and 2 x. _pi is negative. (Contributed by NM, 17-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinq34lt0t | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( sin ‘ 𝐴 ) < 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → 𝐴 ∈ ℝ ) | |
| 2 | picn | ⊢ π ∈ ℂ | |
| 3 | 2 | addlidi | ⊢ ( 0 + π ) = π |
| 4 | 3 | eqcomi | ⊢ π = ( 0 + π ) |
| 5 | 2 | 2timesi | ⊢ ( 2 · π ) = ( π + π ) |
| 6 | 4 5 | oveq12i | ⊢ ( π (,) ( 2 · π ) ) = ( ( 0 + π ) (,) ( π + π ) ) |
| 7 | 6 | eleq2i | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) ↔ 𝐴 ∈ ( ( 0 + π ) (,) ( π + π ) ) ) |
| 8 | pire | ⊢ π ∈ ℝ | |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | iooshf | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ ) ∧ ( 0 ∈ ℝ ∧ π ∈ ℝ ) ) → ( ( 𝐴 − π ) ∈ ( 0 (,) π ) ↔ 𝐴 ∈ ( ( 0 + π ) (,) ( π + π ) ) ) ) | |
| 11 | 9 8 10 | mpanr12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ ) → ( ( 𝐴 − π ) ∈ ( 0 (,) π ) ↔ 𝐴 ∈ ( ( 0 + π ) (,) ( π + π ) ) ) ) |
| 12 | 8 11 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 − π ) ∈ ( 0 (,) π ) ↔ 𝐴 ∈ ( ( 0 + π ) (,) ( π + π ) ) ) ) |
| 13 | 7 12 | bitr4id | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ( π (,) ( 2 · π ) ) ↔ ( 𝐴 − π ) ∈ ( 0 (,) π ) ) ) |
| 14 | 1 13 | syl | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( 𝐴 ∈ ( π (,) ( 2 · π ) ) ↔ ( 𝐴 − π ) ∈ ( 0 (,) π ) ) ) |
| 15 | 14 | ibi | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( 𝐴 − π ) ∈ ( 0 (,) π ) ) |
| 16 | sinq12gt0 | ⊢ ( ( 𝐴 − π ) ∈ ( 0 (,) π ) → 0 < ( sin ‘ ( 𝐴 − π ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → 0 < ( sin ‘ ( 𝐴 − π ) ) ) |
| 18 | 1 | recnd | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → 𝐴 ∈ ℂ ) |
| 19 | sinmpi | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 𝐴 − π ) ) = - ( sin ‘ 𝐴 ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( sin ‘ ( 𝐴 − π ) ) = - ( sin ‘ 𝐴 ) ) |
| 21 | 17 20 | breqtrd | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → 0 < - ( sin ‘ 𝐴 ) ) |
| 22 | 1 | resincld | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 23 | 22 | lt0neg1d | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( ( sin ‘ 𝐴 ) < 0 ↔ 0 < - ( sin ‘ 𝐴 ) ) ) |
| 24 | 21 23 | mpbird | ⊢ ( 𝐴 ∈ ( π (,) ( 2 · π ) ) → ( sin ‘ 𝐴 ) < 0 ) |