This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modular law is implied by the closure of subspace sum. Part of proof of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shmod.1 | |- A e. SH |
|
| shmod.2 | |- B e. SH |
||
| shmod.3 | |- C e. SH |
||
| Assertion | shmodi | |- ( ( ( A +H B ) = ( A vH B ) /\ A C_ C ) -> ( ( A vH B ) i^i C ) C_ ( A vH ( B i^i C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shmod.1 | |- A e. SH |
|
| 2 | shmod.2 | |- B e. SH |
|
| 3 | shmod.3 | |- C e. SH |
|
| 4 | 1 2 3 | shmodsi | |- ( A C_ C -> ( ( A +H B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) |
| 5 | ineq1 | |- ( ( A +H B ) = ( A vH B ) -> ( ( A +H B ) i^i C ) = ( ( A vH B ) i^i C ) ) |
|
| 6 | 5 | sseq1d | |- ( ( A +H B ) = ( A vH B ) -> ( ( ( A +H B ) i^i C ) C_ ( A +H ( B i^i C ) ) <-> ( ( A vH B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) ) |
| 7 | 4 6 | imbitrid | |- ( ( A +H B ) = ( A vH B ) -> ( A C_ C -> ( ( A vH B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) ) |
| 8 | 7 | imp | |- ( ( ( A +H B ) = ( A vH B ) /\ A C_ C ) -> ( ( A vH B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) |
| 9 | 2 3 | shincli | |- ( B i^i C ) e. SH |
| 10 | 1 9 | shsleji | |- ( A +H ( B i^i C ) ) C_ ( A vH ( B i^i C ) ) |
| 11 | 8 10 | sstrdi | |- ( ( ( A +H B ) = ( A vH B ) /\ A C_ C ) -> ( ( A vH B ) i^i C ) C_ ( A vH ( B i^i C ) ) ) |