This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shlesb1.1 | |- A e. SH |
|
| shlesb1.2 | |- B e. SH |
||
| Assertion | shlesb1i | |- ( A C_ B <-> ( A +H B ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shlesb1.1 | |- A e. SH |
|
| 2 | shlesb1.2 | |- B e. SH |
|
| 3 | ssid | |- B C_ B |
|
| 4 | 3 | biantrur | |- ( A C_ B <-> ( B C_ B /\ A C_ B ) ) |
| 5 | 2 1 2 | shslubi | |- ( ( B C_ B /\ A C_ B ) <-> ( B +H A ) C_ B ) |
| 6 | 2 1 | shsub2i | |- B C_ ( A +H B ) |
| 7 | eqss | |- ( ( A +H B ) = B <-> ( ( A +H B ) C_ B /\ B C_ ( A +H B ) ) ) |
|
| 8 | 6 7 | mpbiran2 | |- ( ( A +H B ) = B <-> ( A +H B ) C_ B ) |
| 9 | 1 2 | shscomi | |- ( A +H B ) = ( B +H A ) |
| 10 | 9 | sseq1i | |- ( ( A +H B ) C_ B <-> ( B +H A ) C_ B ) |
| 11 | 8 10 | bitr2i | |- ( ( B +H A ) C_ B <-> ( A +H B ) = B ) |
| 12 | 4 5 11 | 3bitri | |- ( A C_ B <-> ( A +H B ) = B ) |