This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed subspace sum equals Hilbert lattice join. Part of Lemma 31.1.5 of MaedaMaeda p. 136. (Contributed by NM, 30-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shjshs.1 | |- A e. SH |
|
| shjshs.2 | |- B e. SH |
||
| Assertion | shjshseli | |- ( ( A +H B ) e. CH <-> ( A +H B ) = ( A vH B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shjshs.1 | |- A e. SH |
|
| 2 | shjshs.2 | |- B e. SH |
|
| 3 | 1 2 | shjshsi | |- ( A vH B ) = ( _|_ ` ( _|_ ` ( A +H B ) ) ) |
| 4 | ococ | |- ( ( A +H B ) e. CH -> ( _|_ ` ( _|_ ` ( A +H B ) ) ) = ( A +H B ) ) |
|
| 5 | 3 4 | eqtr2id | |- ( ( A +H B ) e. CH -> ( A +H B ) = ( A vH B ) ) |
| 6 | 1 2 | shjcli | |- ( A vH B ) e. CH |
| 7 | eleq1 | |- ( ( A +H B ) = ( A vH B ) -> ( ( A +H B ) e. CH <-> ( A vH B ) e. CH ) ) |
|
| 8 | 6 7 | mpbiri | |- ( ( A +H B ) = ( A vH B ) -> ( A +H B ) e. CH ) |
| 9 | 5 8 | impbii | |- ( ( A +H B ) e. CH <-> ( A +H B ) = ( A vH B ) ) |