This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shincl.1 | |- A e. SH |
|
| shincl.2 | |- B e. SH |
||
| Assertion | shunssi | |- ( A u. B ) C_ ( A +H B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | |- A e. SH |
|
| 2 | shincl.2 | |- B e. SH |
|
| 3 | 1 | sheli | |- ( x e. A -> x e. ~H ) |
| 4 | ax-hvaddid | |- ( x e. ~H -> ( x +h 0h ) = x ) |
|
| 5 | 4 | eqcomd | |- ( x e. ~H -> x = ( x +h 0h ) ) |
| 6 | 3 5 | syl | |- ( x e. A -> x = ( x +h 0h ) ) |
| 7 | sh0 | |- ( B e. SH -> 0h e. B ) |
|
| 8 | 2 7 | ax-mp | |- 0h e. B |
| 9 | rspceov | |- ( ( x e. A /\ 0h e. B /\ x = ( x +h 0h ) ) -> E. y e. A E. z e. B x = ( y +h z ) ) |
|
| 10 | 8 9 | mp3an2 | |- ( ( x e. A /\ x = ( x +h 0h ) ) -> E. y e. A E. z e. B x = ( y +h z ) ) |
| 11 | 6 10 | mpdan | |- ( x e. A -> E. y e. A E. z e. B x = ( y +h z ) ) |
| 12 | 2 | sheli | |- ( x e. B -> x e. ~H ) |
| 13 | hvaddlid | |- ( x e. ~H -> ( 0h +h x ) = x ) |
|
| 14 | 13 | eqcomd | |- ( x e. ~H -> x = ( 0h +h x ) ) |
| 15 | 12 14 | syl | |- ( x e. B -> x = ( 0h +h x ) ) |
| 16 | sh0 | |- ( A e. SH -> 0h e. A ) |
|
| 17 | 1 16 | ax-mp | |- 0h e. A |
| 18 | rspceov | |- ( ( 0h e. A /\ x e. B /\ x = ( 0h +h x ) ) -> E. y e. A E. z e. B x = ( y +h z ) ) |
|
| 19 | 17 18 | mp3an1 | |- ( ( x e. B /\ x = ( 0h +h x ) ) -> E. y e. A E. z e. B x = ( y +h z ) ) |
| 20 | 15 19 | mpdan | |- ( x e. B -> E. y e. A E. z e. B x = ( y +h z ) ) |
| 21 | 11 20 | jaoi | |- ( ( x e. A \/ x e. B ) -> E. y e. A E. z e. B x = ( y +h z ) ) |
| 22 | elun | |- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
|
| 23 | 1 2 | shseli | |- ( x e. ( A +H B ) <-> E. y e. A E. z e. B x = ( y +h z ) ) |
| 24 | 21 22 23 | 3imtr4i | |- ( x e. ( A u. B ) -> x e. ( A +H B ) ) |
| 25 | 24 | ssriv | |- ( A u. B ) C_ ( A +H B ) |