This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum is smaller than Hilbert lattice join. Remark in Kalmbach p. 65. (Contributed by NM, 19-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shincl.1 | |- A e. SH |
|
| shincl.2 | |- B e. SH |
||
| Assertion | shsleji | |- ( A +H B ) C_ ( A vH B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | |- A e. SH |
|
| 2 | shincl.2 | |- B e. SH |
|
| 3 | 1 2 | shseli | |- ( x e. ( A +H B ) <-> E. y e. A E. z e. B x = ( y +h z ) ) |
| 4 | ssun1 | |- A C_ ( A u. B ) |
|
| 5 | 1 2 | shunssji | |- ( A u. B ) C_ ( A vH B ) |
| 6 | 4 5 | sstri | |- A C_ ( A vH B ) |
| 7 | 6 | sseli | |- ( y e. A -> y e. ( A vH B ) ) |
| 8 | ssun2 | |- B C_ ( A u. B ) |
|
| 9 | 8 5 | sstri | |- B C_ ( A vH B ) |
| 10 | 9 | sseli | |- ( z e. B -> z e. ( A vH B ) ) |
| 11 | shjcl | |- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) e. CH ) |
|
| 12 | 1 2 11 | mp2an | |- ( A vH B ) e. CH |
| 13 | 12 | chshii | |- ( A vH B ) e. SH |
| 14 | shaddcl | |- ( ( ( A vH B ) e. SH /\ y e. ( A vH B ) /\ z e. ( A vH B ) ) -> ( y +h z ) e. ( A vH B ) ) |
|
| 15 | 13 14 | mp3an1 | |- ( ( y e. ( A vH B ) /\ z e. ( A vH B ) ) -> ( y +h z ) e. ( A vH B ) ) |
| 16 | 7 10 15 | syl2an | |- ( ( y e. A /\ z e. B ) -> ( y +h z ) e. ( A vH B ) ) |
| 17 | eleq1a | |- ( ( y +h z ) e. ( A vH B ) -> ( x = ( y +h z ) -> x e. ( A vH B ) ) ) |
|
| 18 | 16 17 | syl | |- ( ( y e. A /\ z e. B ) -> ( x = ( y +h z ) -> x e. ( A vH B ) ) ) |
| 19 | 18 | rexlimivv | |- ( E. y e. A E. z e. B x = ( y +h z ) -> x e. ( A vH B ) ) |
| 20 | 3 19 | sylbi | |- ( x e. ( A +H B ) -> x e. ( A vH B ) ) |
| 21 | 20 | ssriv | |- ( A +H B ) C_ ( A vH B ) |