This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqomeq12 | |- ( ( A = B /\ C = D ) -> seqom ( A , C ) = seqom ( B , D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq | |- ( A = B -> ( a A b ) = ( a B b ) ) |
|
| 2 | 1 | opeq2d | |- ( A = B -> <. suc a , ( a A b ) >. = <. suc a , ( a B b ) >. ) |
| 3 | 2 | mpoeq3dv | |- ( A = B -> ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) = ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) ) |
| 4 | fveq2 | |- ( C = D -> ( _I ` C ) = ( _I ` D ) ) |
|
| 5 | 4 | opeq2d | |- ( C = D -> <. (/) , ( _I ` C ) >. = <. (/) , ( _I ` D ) >. ) |
| 6 | rdgeq12 | |- ( ( ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) = ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) /\ <. (/) , ( _I ` C ) >. = <. (/) , ( _I ` D ) >. ) -> rec ( ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) , <. (/) , ( _I ` C ) >. ) = rec ( ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) , <. (/) , ( _I ` D ) >. ) ) |
|
| 7 | 3 5 6 | syl2an | |- ( ( A = B /\ C = D ) -> rec ( ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) , <. (/) , ( _I ` C ) >. ) = rec ( ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) , <. (/) , ( _I ` D ) >. ) ) |
| 8 | 7 | imaeq1d | |- ( ( A = B /\ C = D ) -> ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) , <. (/) , ( _I ` C ) >. ) " _om ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) , <. (/) , ( _I ` D ) >. ) " _om ) ) |
| 9 | df-seqom | |- seqom ( A , C ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a A b ) >. ) , <. (/) , ( _I ` C ) >. ) " _om ) |
|
| 10 | df-seqom | |- seqom ( B , D ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a B b ) >. ) , <. (/) , ( _I ` D ) >. ) " _om ) |
|
| 11 | 8 9 10 | 3eqtr4g | |- ( ( A = B /\ C = D ) -> seqom ( A , C ) = seqom ( B , D ) ) |