This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqom . The underlying recursion generates a sequence of pairs with the expected first values. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqomlem.a | |- Q = rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |
|
| Assertion | seqomlem1 | |- ( A e. _om -> ( Q ` A ) = <. A , ( 2nd ` ( Q ` A ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqomlem.a | |- Q = rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |
|
| 2 | fveq2 | |- ( a = (/) -> ( Q ` a ) = ( Q ` (/) ) ) |
|
| 3 | id | |- ( a = (/) -> a = (/) ) |
|
| 4 | 2fveq3 | |- ( a = (/) -> ( 2nd ` ( Q ` a ) ) = ( 2nd ` ( Q ` (/) ) ) ) |
|
| 5 | 3 4 | opeq12d | |- ( a = (/) -> <. a , ( 2nd ` ( Q ` a ) ) >. = <. (/) , ( 2nd ` ( Q ` (/) ) ) >. ) |
| 6 | 2 5 | eqeq12d | |- ( a = (/) -> ( ( Q ` a ) = <. a , ( 2nd ` ( Q ` a ) ) >. <-> ( Q ` (/) ) = <. (/) , ( 2nd ` ( Q ` (/) ) ) >. ) ) |
| 7 | fveq2 | |- ( a = b -> ( Q ` a ) = ( Q ` b ) ) |
|
| 8 | id | |- ( a = b -> a = b ) |
|
| 9 | 2fveq3 | |- ( a = b -> ( 2nd ` ( Q ` a ) ) = ( 2nd ` ( Q ` b ) ) ) |
|
| 10 | 8 9 | opeq12d | |- ( a = b -> <. a , ( 2nd ` ( Q ` a ) ) >. = <. b , ( 2nd ` ( Q ` b ) ) >. ) |
| 11 | 7 10 | eqeq12d | |- ( a = b -> ( ( Q ` a ) = <. a , ( 2nd ` ( Q ` a ) ) >. <-> ( Q ` b ) = <. b , ( 2nd ` ( Q ` b ) ) >. ) ) |
| 12 | fveq2 | |- ( a = suc b -> ( Q ` a ) = ( Q ` suc b ) ) |
|
| 13 | id | |- ( a = suc b -> a = suc b ) |
|
| 14 | 2fveq3 | |- ( a = suc b -> ( 2nd ` ( Q ` a ) ) = ( 2nd ` ( Q ` suc b ) ) ) |
|
| 15 | 13 14 | opeq12d | |- ( a = suc b -> <. a , ( 2nd ` ( Q ` a ) ) >. = <. suc b , ( 2nd ` ( Q ` suc b ) ) >. ) |
| 16 | 12 15 | eqeq12d | |- ( a = suc b -> ( ( Q ` a ) = <. a , ( 2nd ` ( Q ` a ) ) >. <-> ( Q ` suc b ) = <. suc b , ( 2nd ` ( Q ` suc b ) ) >. ) ) |
| 17 | fveq2 | |- ( a = A -> ( Q ` a ) = ( Q ` A ) ) |
|
| 18 | id | |- ( a = A -> a = A ) |
|
| 19 | 2fveq3 | |- ( a = A -> ( 2nd ` ( Q ` a ) ) = ( 2nd ` ( Q ` A ) ) ) |
|
| 20 | 18 19 | opeq12d | |- ( a = A -> <. a , ( 2nd ` ( Q ` a ) ) >. = <. A , ( 2nd ` ( Q ` A ) ) >. ) |
| 21 | 17 20 | eqeq12d | |- ( a = A -> ( ( Q ` a ) = <. a , ( 2nd ` ( Q ` a ) ) >. <-> ( Q ` A ) = <. A , ( 2nd ` ( Q ` A ) ) >. ) ) |
| 22 | 1 | fveq1i | |- ( Q ` (/) ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` (/) ) |
| 23 | opex | |- <. (/) , ( _I ` I ) >. e. _V |
|
| 24 | 23 | rdg0 | |- ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` (/) ) = <. (/) , ( _I ` I ) >. |
| 25 | 22 24 | eqtri | |- ( Q ` (/) ) = <. (/) , ( _I ` I ) >. |
| 26 | 0ex | |- (/) e. _V |
|
| 27 | fvex | |- ( _I ` I ) e. _V |
|
| 28 | 26 27 | op2nd | |- ( 2nd ` <. (/) , ( _I ` I ) >. ) = ( _I ` I ) |
| 29 | 28 | eqcomi | |- ( _I ` I ) = ( 2nd ` <. (/) , ( _I ` I ) >. ) |
| 30 | 29 | opeq2i | |- <. (/) , ( _I ` I ) >. = <. (/) , ( 2nd ` <. (/) , ( _I ` I ) >. ) >. |
| 31 | id | |- ( ( Q ` (/) ) = <. (/) , ( _I ` I ) >. -> ( Q ` (/) ) = <. (/) , ( _I ` I ) >. ) |
|
| 32 | fveq2 | |- ( ( Q ` (/) ) = <. (/) , ( _I ` I ) >. -> ( 2nd ` ( Q ` (/) ) ) = ( 2nd ` <. (/) , ( _I ` I ) >. ) ) |
|
| 33 | 32 | opeq2d | |- ( ( Q ` (/) ) = <. (/) , ( _I ` I ) >. -> <. (/) , ( 2nd ` ( Q ` (/) ) ) >. = <. (/) , ( 2nd ` <. (/) , ( _I ` I ) >. ) >. ) |
| 34 | 30 31 33 | 3eqtr4a | |- ( ( Q ` (/) ) = <. (/) , ( _I ` I ) >. -> ( Q ` (/) ) = <. (/) , ( 2nd ` ( Q ` (/) ) ) >. ) |
| 35 | 25 34 | ax-mp | |- ( Q ` (/) ) = <. (/) , ( 2nd ` ( Q ` (/) ) ) >. |
| 36 | df-ov | |- ( b ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` b ) ) ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. b , ( 2nd ` ( Q ` b ) ) >. ) |
|
| 37 | fvex | |- ( 2nd ` ( Q ` b ) ) e. _V |
|
| 38 | suceq | |- ( i = b -> suc i = suc b ) |
|
| 39 | oveq1 | |- ( i = b -> ( i F v ) = ( b F v ) ) |
|
| 40 | 38 39 | opeq12d | |- ( i = b -> <. suc i , ( i F v ) >. = <. suc b , ( b F v ) >. ) |
| 41 | oveq2 | |- ( v = ( 2nd ` ( Q ` b ) ) -> ( b F v ) = ( b F ( 2nd ` ( Q ` b ) ) ) ) |
|
| 42 | 41 | opeq2d | |- ( v = ( 2nd ` ( Q ` b ) ) -> <. suc b , ( b F v ) >. = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 43 | eqid | |- ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) = ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) |
|
| 44 | opex | |- <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. e. _V |
|
| 45 | 40 42 43 44 | ovmpo | |- ( ( b e. _om /\ ( 2nd ` ( Q ` b ) ) e. _V ) -> ( b ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` b ) ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 46 | 37 45 | mpan2 | |- ( b e. _om -> ( b ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` b ) ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 47 | 36 46 | eqtr3id | |- ( b e. _om -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. b , ( 2nd ` ( Q ` b ) ) >. ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 48 | fveqeq2 | |- ( ( Q ` b ) = <. b , ( 2nd ` ( Q ` b ) ) >. -> ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. <-> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. b , ( 2nd ` ( Q ` b ) ) >. ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) ) |
|
| 49 | 47 48 | syl5ibrcom | |- ( b e. _om -> ( ( Q ` b ) = <. b , ( 2nd ` ( Q ` b ) ) >. -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) ) |
| 50 | vex | |- b e. _V |
|
| 51 | 50 | sucex | |- suc b e. _V |
| 52 | ovex | |- ( b F ( 2nd ` ( Q ` b ) ) ) e. _V |
|
| 53 | 51 52 | op2nd | |- ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) = ( b F ( 2nd ` ( Q ` b ) ) ) |
| 54 | 53 | eqcomi | |- ( b F ( 2nd ` ( Q ` b ) ) ) = ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
| 55 | 54 | a1i | |- ( b e. _om -> ( b F ( 2nd ` ( Q ` b ) ) ) = ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) ) |
| 56 | 55 | opeq2d | |- ( b e. _om -> <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. = <. suc b , ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) >. ) |
| 57 | id | |- ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) |
|
| 58 | fveq2 | |- ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. -> ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) = ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) ) |
|
| 59 | 58 | opeq2d | |- ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. -> <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. = <. suc b , ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) >. ) |
| 60 | 57 59 | eqeq12d | |- ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. -> ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. <-> <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. = <. suc b , ( 2nd ` <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. ) >. ) ) |
| 61 | 56 60 | syl5ibrcom | |- ( b e. _om -> ( ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( b F ( 2nd ` ( Q ` b ) ) ) >. -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. ) ) |
| 62 | 49 61 | syld | |- ( b e. _om -> ( ( Q ` b ) = <. b , ( 2nd ` ( Q ` b ) ) >. -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. ) ) |
| 63 | frsuc | |- ( b e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc b ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` b ) ) ) |
|
| 64 | peano2 | |- ( b e. _om -> suc b e. _om ) |
|
| 65 | 64 | fvresd | |- ( b e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc b ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` suc b ) ) |
| 66 | 1 | fveq1i | |- ( Q ` suc b ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` suc b ) |
| 67 | 65 66 | eqtr4di | |- ( b e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc b ) = ( Q ` suc b ) ) |
| 68 | fvres | |- ( b e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` b ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` b ) ) |
|
| 69 | 1 | fveq1i | |- ( Q ` b ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` b ) |
| 70 | 68 69 | eqtr4di | |- ( b e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` b ) = ( Q ` b ) ) |
| 71 | 70 | fveq2d | |- ( b e. _om -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` b ) ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) |
| 72 | 63 67 71 | 3eqtr3d | |- ( b e. _om -> ( Q ` suc b ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) |
| 73 | 72 | fveq2d | |- ( b e. _om -> ( 2nd ` ( Q ` suc b ) ) = ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) ) |
| 74 | 73 | opeq2d | |- ( b e. _om -> <. suc b , ( 2nd ` ( Q ` suc b ) ) >. = <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. ) |
| 75 | 72 74 | eqeq12d | |- ( b e. _om -> ( ( Q ` suc b ) = <. suc b , ( 2nd ` ( Q ` suc b ) ) >. <-> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) = <. suc b , ( 2nd ` ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` b ) ) ) >. ) ) |
| 76 | 62 75 | sylibrd | |- ( b e. _om -> ( ( Q ` b ) = <. b , ( 2nd ` ( Q ` b ) ) >. -> ( Q ` suc b ) = <. suc b , ( 2nd ` ( Q ` suc b ) ) >. ) ) |
| 77 | 6 11 16 21 35 76 | finds | |- ( A e. _om -> ( Q ` A ) = <. A , ( 2nd ` ( Q ` A ) ) >. ) |