This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: D is a ring homomorphism. (Contributed by SN, 15-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | selvcllem2.u | |- U = ( I mPoly R ) |
|
| selvcllem2.t | |- T = ( J mPoly U ) |
||
| selvcllem2.c | |- C = ( algSc ` T ) |
||
| selvcllem2.d | |- D = ( C o. ( algSc ` U ) ) |
||
| selvcllem2.i | |- ( ph -> I e. V ) |
||
| selvcllem2.j | |- ( ph -> J e. W ) |
||
| selvcllem2.r | |- ( ph -> R e. CRing ) |
||
| Assertion | selvcllem2 | |- ( ph -> D e. ( R RingHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selvcllem2.u | |- U = ( I mPoly R ) |
|
| 2 | selvcllem2.t | |- T = ( J mPoly U ) |
|
| 3 | selvcllem2.c | |- C = ( algSc ` T ) |
|
| 4 | selvcllem2.d | |- D = ( C o. ( algSc ` U ) ) |
|
| 5 | selvcllem2.i | |- ( ph -> I e. V ) |
|
| 6 | selvcllem2.j | |- ( ph -> J e. W ) |
|
| 7 | selvcllem2.r | |- ( ph -> R e. CRing ) |
|
| 8 | 1 2 5 6 7 | selvcllem1 | |- ( ph -> T e. AssAlg ) |
| 9 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
| 10 | 3 9 | asclrhm | |- ( T e. AssAlg -> C e. ( ( Scalar ` T ) RingHom T ) ) |
| 11 | 8 10 | syl | |- ( ph -> C e. ( ( Scalar ` T ) RingHom T ) ) |
| 12 | 1 | mplassa | |- ( ( I e. V /\ R e. CRing ) -> U e. AssAlg ) |
| 13 | 5 7 12 | syl2anc | |- ( ph -> U e. AssAlg ) |
| 14 | 2 6 13 | mplsca | |- ( ph -> U = ( Scalar ` T ) ) |
| 15 | 14 | oveq1d | |- ( ph -> ( U RingHom T ) = ( ( Scalar ` T ) RingHom T ) ) |
| 16 | 11 15 | eleqtrrd | |- ( ph -> C e. ( U RingHom T ) ) |
| 17 | eqid | |- ( algSc ` U ) = ( algSc ` U ) |
|
| 18 | eqid | |- ( Scalar ` U ) = ( Scalar ` U ) |
|
| 19 | 17 18 | asclrhm | |- ( U e. AssAlg -> ( algSc ` U ) e. ( ( Scalar ` U ) RingHom U ) ) |
| 20 | 13 19 | syl | |- ( ph -> ( algSc ` U ) e. ( ( Scalar ` U ) RingHom U ) ) |
| 21 | rhmco | |- ( ( C e. ( U RingHom T ) /\ ( algSc ` U ) e. ( ( Scalar ` U ) RingHom U ) ) -> ( C o. ( algSc ` U ) ) e. ( ( Scalar ` U ) RingHom T ) ) |
|
| 22 | 16 20 21 | syl2anc | |- ( ph -> ( C o. ( algSc ` U ) ) e. ( ( Scalar ` U ) RingHom T ) ) |
| 23 | 1 5 7 | mplsca | |- ( ph -> R = ( Scalar ` U ) ) |
| 24 | 23 | oveq1d | |- ( ph -> ( R RingHom T ) = ( ( Scalar ` U ) RingHom T ) ) |
| 25 | 22 24 | eleqtrrd | |- ( ph -> ( C o. ( algSc ` U ) ) e. ( R RingHom T ) ) |
| 26 | 4 25 | eqeltrid | |- ( ph -> D e. ( R RingHom T ) ) |