This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: D is a ring homomorphism. (Contributed by SN, 15-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | selvcllem2.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝑅 ) | |
| selvcllem2.t | ⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) | ||
| selvcllem2.c | ⊢ 𝐶 = ( algSc ‘ 𝑇 ) | ||
| selvcllem2.d | ⊢ 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) | ||
| selvcllem2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| selvcllem2.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | ||
| selvcllem2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| Assertion | selvcllem2 | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selvcllem2.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | selvcllem2.t | ⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) | |
| 3 | selvcllem2.c | ⊢ 𝐶 = ( algSc ‘ 𝑇 ) | |
| 4 | selvcllem2.d | ⊢ 𝐷 = ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) | |
| 5 | selvcllem2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | selvcllem2.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | |
| 7 | selvcllem2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 8 | 1 2 5 6 7 | selvcllem1 | ⊢ ( 𝜑 → 𝑇 ∈ AssAlg ) |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 10 | 3 9 | asclrhm | ⊢ ( 𝑇 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) ) |
| 12 | 1 | mplassa | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ AssAlg ) |
| 13 | 5 7 12 | syl2anc | ⊢ ( 𝜑 → 𝑈 ∈ AssAlg ) |
| 14 | 2 6 13 | mplsca | ⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑇 ) ) |
| 15 | 14 | oveq1d | ⊢ ( 𝜑 → ( 𝑈 RingHom 𝑇 ) = ( ( Scalar ‘ 𝑇 ) RingHom 𝑇 ) ) |
| 16 | 11 15 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝑈 RingHom 𝑇 ) ) |
| 17 | eqid | ⊢ ( algSc ‘ 𝑈 ) = ( algSc ‘ 𝑈 ) | |
| 18 | eqid | ⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) | |
| 19 | 17 18 | asclrhm | ⊢ ( 𝑈 ∈ AssAlg → ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) |
| 20 | 13 19 | syl | ⊢ ( 𝜑 → ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) |
| 21 | rhmco | ⊢ ( ( 𝐶 ∈ ( 𝑈 RingHom 𝑇 ) ∧ ( algSc ‘ 𝑈 ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) ) | |
| 22 | 16 20 21 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) ) |
| 23 | 1 5 7 | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑈 ) ) |
| 24 | 23 | oveq1d | ⊢ ( 𝜑 → ( 𝑅 RingHom 𝑇 ) = ( ( Scalar ‘ 𝑈 ) RingHom 𝑇 ) ) |
| 25 | 22 24 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐶 ∘ ( algSc ‘ 𝑈 ) ) ∈ ( 𝑅 RingHom 𝑇 ) ) |
| 26 | 4 25 | eqeltrid | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝑅 RingHom 𝑇 ) ) |