This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: T is an associative algebra. For simplicity, I stands for ( I \ J ) and we have J e. W instead of J C_ I . TODO-SN: In practice, this "simplification" makes the lemmas harder to use. (Contributed by SN, 15-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | selvcllem1.u | |- U = ( I mPoly R ) |
|
| selvcllem1.t | |- T = ( J mPoly U ) |
||
| selvcllem1.i | |- ( ph -> I e. V ) |
||
| selvcllem1.j | |- ( ph -> J e. W ) |
||
| selvcllem1.r | |- ( ph -> R e. CRing ) |
||
| Assertion | selvcllem1 | |- ( ph -> T e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selvcllem1.u | |- U = ( I mPoly R ) |
|
| 2 | selvcllem1.t | |- T = ( J mPoly U ) |
|
| 3 | selvcllem1.i | |- ( ph -> I e. V ) |
|
| 4 | selvcllem1.j | |- ( ph -> J e. W ) |
|
| 5 | selvcllem1.r | |- ( ph -> R e. CRing ) |
|
| 6 | 1 | mplcrng | |- ( ( I e. V /\ R e. CRing ) -> U e. CRing ) |
| 7 | 3 5 6 | syl2anc | |- ( ph -> U e. CRing ) |
| 8 | 2 | mplassa | |- ( ( J e. W /\ U e. CRing ) -> T e. AssAlg ) |
| 9 | 4 7 8 | syl2anc | |- ( ph -> T e. AssAlg ) |