This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 6-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbco2d.1 | |- F/ x ph |
|
| sbco2d.2 | |- F/ z ph |
||
| sbco2d.3 | |- ( ph -> F/ z ps ) |
||
| Assertion | sbco2d | |- ( ph -> ( [ y / z ] [ z / x ] ps <-> [ y / x ] ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2d.1 | |- F/ x ph |
|
| 2 | sbco2d.2 | |- F/ z ph |
|
| 3 | sbco2d.3 | |- ( ph -> F/ z ps ) |
|
| 4 | 2 3 | nfim1 | |- F/ z ( ph -> ps ) |
| 5 | 4 | sbco2 | |- ( [ y / z ] [ z / x ] ( ph -> ps ) <-> [ y / x ] ( ph -> ps ) ) |
| 6 | 1 | sbrim | |- ( [ z / x ] ( ph -> ps ) <-> ( ph -> [ z / x ] ps ) ) |
| 7 | 6 | sbbii | |- ( [ y / z ] [ z / x ] ( ph -> ps ) <-> [ y / z ] ( ph -> [ z / x ] ps ) ) |
| 8 | 2 | sbrim | |- ( [ y / z ] ( ph -> [ z / x ] ps ) <-> ( ph -> [ y / z ] [ z / x ] ps ) ) |
| 9 | 7 8 | bitri | |- ( [ y / z ] [ z / x ] ( ph -> ps ) <-> ( ph -> [ y / z ] [ z / x ] ps ) ) |
| 10 | 1 | sbrim | |- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) |
| 11 | 5 9 10 | 3bitr3i | |- ( ( ph -> [ y / z ] [ z / x ] ps ) <-> ( ph -> [ y / x ] ps ) ) |
| 12 | 11 | pm5.74ri | |- ( ph -> ( [ y / z ] [ z / x ] ps <-> [ y / x ] ps ) ) |