This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed form of nfim . (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 2-Jan-2018) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfim1.1 | |- F/ x ph |
|
| nfim1.2 | |- ( ph -> F/ x ps ) |
||
| Assertion | nfim1 | |- F/ x ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim1.1 | |- F/ x ph |
|
| 2 | nfim1.2 | |- ( ph -> F/ x ps ) |
|
| 3 | nf3 | |- ( F/ x ph <-> ( A. x ph \/ A. x -. ph ) ) |
|
| 4 | 1 3 | mpbi | |- ( A. x ph \/ A. x -. ph ) |
| 5 | nftht | |- ( A. x ph -> F/ x ph ) |
|
| 6 | 2 | sps | |- ( A. x ph -> F/ x ps ) |
| 7 | 5 6 | nfimd | |- ( A. x ph -> F/ x ( ph -> ps ) ) |
| 8 | pm2.21 | |- ( -. ph -> ( ph -> ps ) ) |
|
| 9 | 8 | alimi | |- ( A. x -. ph -> A. x ( ph -> ps ) ) |
| 10 | nftht | |- ( A. x ( ph -> ps ) -> F/ x ( ph -> ps ) ) |
|
| 11 | 9 10 | syl | |- ( A. x -. ph -> F/ x ( ph -> ps ) ) |
| 12 | 7 11 | jaoi | |- ( ( A. x ph \/ A. x -. ph ) -> F/ x ( ph -> ps ) ) |
| 13 | 4 12 | ax-mp | |- F/ x ( ph -> ps ) |