This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jun-1993) (Proof shortened by Wolf Lammen, 18-Sep-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbco3 | |- ( [ z / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsb1 | |- ( A. x x = y -> ( [ z / x ] [ y / x ] ph <-> [ z / y ] [ y / x ] ph ) ) |
|
| 2 | nfae | |- F/ x A. x x = y |
|
| 3 | sbequ12a | |- ( x = y -> ( [ y / x ] ph <-> [ x / y ] ph ) ) |
|
| 4 | 3 | sps | |- ( A. x x = y -> ( [ y / x ] ph <-> [ x / y ] ph ) ) |
| 5 | 2 4 | sbbid | |- ( A. x x = y -> ( [ z / x ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) ) |
| 6 | 1 5 | bitr3d | |- ( A. x x = y -> ( [ z / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) ) |
| 7 | nfnae | |- F/ y -. A. x x = y |
|
| 8 | nfnae | |- F/ x -. A. x x = y |
|
| 9 | nfsb2 | |- ( -. A. x x = y -> F/ x [ y / x ] ph ) |
|
| 10 | 7 8 9 | sbco2d | |- ( -. A. x x = y -> ( [ z / x ] [ x / y ] [ y / x ] ph <-> [ z / y ] [ y / x ] ph ) ) |
| 11 | sbco | |- ( [ x / y ] [ y / x ] ph <-> [ x / y ] ph ) |
|
| 12 | 11 | sbbii | |- ( [ z / x ] [ x / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) |
| 13 | 10 12 | bitr3di | |- ( -. A. x x = y -> ( [ z / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) ) |
| 14 | 6 13 | pm2.61i | |- ( [ z / y ] [ y / x ] ph <-> [ z / x ] [ x / y ] ph ) |