This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A composition law for substitution. For versions requiring fewer axioms, but more disjoint variable conditions, see sbco2v and sbco2vv . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 30-Jun-1994) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 17-Sep-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbco2.1 | |- F/ z ph |
|
| Assertion | sbco2 | |- ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2.1 | |- F/ z ph |
|
| 2 | sbequ12 | |- ( z = y -> ( [ z / x ] ph <-> [ y / z ] [ z / x ] ph ) ) |
|
| 3 | sbequ | |- ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) |
|
| 4 | 2 3 | bitr3d | |- ( z = y -> ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph ) ) |
| 5 | 4 | sps | |- ( A. z z = y -> ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph ) ) |
| 6 | nfnae | |- F/ z -. A. z z = y |
|
| 7 | 1 | nfsb4 | |- ( -. A. z z = y -> F/ z [ y / x ] ph ) |
| 8 | 3 | a1i | |- ( -. A. z z = y -> ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) ) |
| 9 | 6 7 8 | sbied | |- ( -. A. z z = y -> ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph ) ) |
| 10 | 5 9 | pm2.61i | |- ( [ y / z ] [ z / x ] ph <-> [ y / x ] ph ) |