This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pm5.74ri

Description: Distribution of implication over biconditional (reverse inference form). (Contributed by NM, 1-Aug-1994)

Ref Expression
Hypothesis pm5.74ri.1
|- ( ( ph -> ps ) <-> ( ph -> ch ) )
Assertion pm5.74ri
|- ( ph -> ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 pm5.74ri.1
 |-  ( ( ph -> ps ) <-> ( ph -> ch ) )
2 pm5.74
 |-  ( ( ph -> ( ps <-> ch ) ) <-> ( ( ph -> ps ) <-> ( ph -> ch ) ) )
3 1 2 mpbir
 |-  ( ph -> ( ps <-> ch ) )