This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 4-Oct-2016) Avoid ax-10 . (Revised by GG, 20-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbrim.1 | |- F/ x ph |
|
| Assertion | sbrim | |- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbrim.1 | |- F/ x ph |
|
| 2 | bi2.04 | |- ( ( x = t -> ( ph -> ps ) ) <-> ( ph -> ( x = t -> ps ) ) ) |
|
| 3 | 2 | albii | |- ( A. x ( x = t -> ( ph -> ps ) ) <-> A. x ( ph -> ( x = t -> ps ) ) ) |
| 4 | 1 | 19.21 | |- ( A. x ( ph -> ( x = t -> ps ) ) <-> ( ph -> A. x ( x = t -> ps ) ) ) |
| 5 | 3 4 | bitri | |- ( A. x ( x = t -> ( ph -> ps ) ) <-> ( ph -> A. x ( x = t -> ps ) ) ) |
| 6 | 5 | imbi2i | |- ( ( t = y -> A. x ( x = t -> ( ph -> ps ) ) ) <-> ( t = y -> ( ph -> A. x ( x = t -> ps ) ) ) ) |
| 7 | bi2.04 | |- ( ( t = y -> ( ph -> A. x ( x = t -> ps ) ) ) <-> ( ph -> ( t = y -> A. x ( x = t -> ps ) ) ) ) |
|
| 8 | 6 7 | bitri | |- ( ( t = y -> A. x ( x = t -> ( ph -> ps ) ) ) <-> ( ph -> ( t = y -> A. x ( x = t -> ps ) ) ) ) |
| 9 | 8 | albii | |- ( A. t ( t = y -> A. x ( x = t -> ( ph -> ps ) ) ) <-> A. t ( ph -> ( t = y -> A. x ( x = t -> ps ) ) ) ) |
| 10 | dfsb | |- ( [ y / x ] ( ph -> ps ) <-> A. t ( t = y -> A. x ( x = t -> ( ph -> ps ) ) ) ) |
|
| 11 | dfsb | |- ( [ y / x ] ps <-> A. t ( t = y -> A. x ( x = t -> ps ) ) ) |
|
| 12 | 11 | imbi2i | |- ( ( ph -> [ y / x ] ps ) <-> ( ph -> A. t ( t = y -> A. x ( x = t -> ps ) ) ) ) |
| 13 | 19.21v | |- ( A. t ( ph -> ( t = y -> A. x ( x = t -> ps ) ) ) <-> ( ph -> A. t ( t = y -> A. x ( x = t -> ps ) ) ) ) |
|
| 14 | 12 13 | bitr4i | |- ( ( ph -> [ y / x ] ps ) <-> A. t ( ph -> ( t = y -> A. x ( x = t -> ps ) ) ) ) |
| 15 | 9 10 14 | 3bitr4i | |- ( [ y / x ] ( ph -> ps ) <-> ( ph -> [ y / x ] ps ) ) |