This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 6-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbco2d.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| sbco2d.2 | ⊢ Ⅎ 𝑧 𝜑 | ||
| sbco2d.3 | ⊢ ( 𝜑 → Ⅎ 𝑧 𝜓 ) | ||
| Assertion | sbco2d | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2d.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | sbco2d.2 | ⊢ Ⅎ 𝑧 𝜑 | |
| 3 | sbco2d.3 | ⊢ ( 𝜑 → Ⅎ 𝑧 𝜓 ) | |
| 4 | 2 3 | nfim1 | ⊢ Ⅎ 𝑧 ( 𝜑 → 𝜓 ) |
| 5 | 4 | sbco2 | ⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) |
| 6 | 1 | sbrim | ⊢ ( [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) ) |
| 7 | 6 | sbbii | ⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ [ 𝑦 / 𝑧 ] ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) ) |
| 8 | 2 | sbrim | ⊢ ( [ 𝑦 / 𝑧 ] ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) ) |
| 9 | 7 8 | bitri | ⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) ) |
| 10 | 1 | sbrim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 11 | 5 9 10 | 3bitr3i | ⊢ ( ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 12 | 11 | pm5.74ri | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |