This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the satisfaction predicate as function over wff codes does not depend on the model M and the binary relation E on M . (Contributed by AV, 13-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satfdm | |- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = (/) -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` (/) ) ) |
|
| 2 | 1 | dmeqd | |- ( x = (/) -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` (/) ) ) |
| 3 | fveq2 | |- ( x = (/) -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` (/) ) ) |
|
| 4 | 3 | dmeqd | |- ( x = (/) -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` (/) ) ) |
| 5 | 2 4 | eqeq12d | |- ( x = (/) -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) ) |
| 6 | 5 | imbi2d | |- ( x = (/) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) ) ) |
| 7 | fveq2 | |- ( x = y -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` y ) ) |
|
| 8 | 7 | dmeqd | |- ( x = y -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` y ) ) |
| 9 | fveq2 | |- ( x = y -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` y ) ) |
|
| 10 | 9 | dmeqd | |- ( x = y -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` y ) ) |
| 11 | 8 10 | eqeq12d | |- ( x = y -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) |
| 12 | 11 | imbi2d | |- ( x = y -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) ) |
| 13 | fveq2 | |- ( x = suc y -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` suc y ) ) |
|
| 14 | 13 | dmeqd | |- ( x = suc y -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` suc y ) ) |
| 15 | fveq2 | |- ( x = suc y -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` suc y ) ) |
|
| 16 | 15 | dmeqd | |- ( x = suc y -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` suc y ) ) |
| 17 | 14 16 | eqeq12d | |- ( x = suc y -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) |
| 18 | 17 | imbi2d | |- ( x = suc y -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) |
| 19 | fveq2 | |- ( x = n -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` n ) ) |
|
| 20 | 19 | dmeqd | |- ( x = n -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` n ) ) |
| 21 | fveq2 | |- ( x = n -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` n ) ) |
|
| 22 | 21 | dmeqd | |- ( x = n -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` n ) ) |
| 23 | 20 22 | eqeq12d | |- ( x = n -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) |
| 24 | 23 | imbi2d | |- ( x = n -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) ) |
| 25 | rexcom4 | |- ( E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
|
| 26 | 25 | rexbii | |- ( E. u e. _om E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
| 27 | ovex | |- ( M ^m _om ) e. _V |
|
| 28 | 27 | rabex | |- { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } e. _V |
| 29 | 28 | isseti | |- E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } |
| 30 | ovex | |- ( N ^m _om ) e. _V |
|
| 31 | 30 | rabex | |- { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } e. _V |
| 32 | 31 | isseti | |- E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } |
| 33 | 29 32 | 2th | |- ( E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } <-> E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) |
| 34 | 33 | anbi2i | |- ( ( x = ( u e.g v ) /\ E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 35 | 19.42v | |- ( E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
|
| 36 | 19.42v | |- ( E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
|
| 37 | 34 35 36 | 3bitr4i | |- ( E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 38 | 37 | rexbii | |- ( E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 39 | 38 | rexbii | |- ( E. u e. _om E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 40 | rexcom4 | |- ( E. u e. _om E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
|
| 41 | 26 39 40 | 3bitr3ri | |- ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 42 | rexcom4 | |- ( E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
|
| 43 | 42 | rexbii | |- ( E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 44 | 41 43 | bitri | |- ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 45 | rexcom4 | |- ( E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
|
| 46 | 44 45 | bitri | |- ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 47 | 46 | abbii | |- { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } |
| 48 | eqid | |- ( M Sat E ) = ( M Sat E ) |
|
| 49 | 48 | satfv0 | |- ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` (/) ) = { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
| 50 | 49 | dmeqd | |- ( ( M e. V /\ E e. W ) -> dom ( ( M Sat E ) ` (/) ) = dom { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
| 51 | dmopab | |- dom { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } |
|
| 52 | 50 51 | eqtrdi | |- ( ( M e. V /\ E e. W ) -> dom ( ( M Sat E ) ` (/) ) = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
| 53 | 52 | adantr | |- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
| 54 | eqid | |- ( N Sat F ) = ( N Sat F ) |
|
| 55 | 54 | satfv0 | |- ( ( N e. X /\ F e. Y ) -> ( ( N Sat F ) ` (/) ) = { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
| 56 | 55 | dmeqd | |- ( ( N e. X /\ F e. Y ) -> dom ( ( N Sat F ) ` (/) ) = dom { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
| 57 | dmopab | |- dom { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } |
|
| 58 | 56 57 | eqtrdi | |- ( ( N e. X /\ F e. Y ) -> dom ( ( N Sat F ) ` (/) ) = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
| 59 | 58 | adantl | |- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( N Sat F ) ` (/) ) = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
| 60 | 47 53 59 | 3eqtr4a | |- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) |
| 61 | pm2.27 | |- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) |
|
| 62 | 61 | adantl | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) |
| 63 | simpr | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) |
|
| 64 | simprl | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( M e. V /\ E e. W ) ) |
|
| 65 | simpl | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> y e. _om ) |
|
| 66 | df-3an | |- ( ( M e. V /\ E e. W /\ y e. _om ) <-> ( ( M e. V /\ E e. W ) /\ y e. _om ) ) |
|
| 67 | 64 65 66 | sylanbrc | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( M e. V /\ E e. W /\ y e. _om ) ) |
| 68 | satfdmlem | |- ( ( ( M e. V /\ E e. W /\ y e. _om ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
|
| 69 | 67 68 | sylan | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
| 70 | simprr | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( N e. X /\ F e. Y ) ) |
|
| 71 | df-3an | |- ( ( N e. X /\ F e. Y /\ y e. _om ) <-> ( ( N e. X /\ F e. Y ) /\ y e. _om ) ) |
|
| 72 | 70 65 71 | sylanbrc | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( N e. X /\ F e. Y /\ y e. _om ) ) |
| 73 | id | |- ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) |
|
| 74 | 73 | eqcomd | |- ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( N Sat F ) ` y ) = dom ( ( M Sat E ) ` y ) ) |
| 75 | satfdmlem | |- ( ( ( N e. X /\ F e. Y /\ y e. _om ) /\ dom ( ( N Sat F ) ` y ) = dom ( ( M Sat E ) ` y ) ) -> ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) -> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
|
| 76 | 72 74 75 | syl2an | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) -> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 77 | 69 76 | impbid | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
| 78 | 27 | difexi | |- ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V |
| 79 | 78 | isseti | |- E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
| 80 | 79 | biantru | |- ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 81 | 80 | bicomi | |- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 82 | 81 | rexbii | |- ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 83 | 27 | rabex | |- { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V |
| 84 | 83 | isseti | |- E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
| 85 | 84 | biantru | |- ( x = A.g i ( 1st ` u ) <-> ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 86 | 85 | bicomi | |- ( ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> x = A.g i ( 1st ` u ) ) |
| 87 | 86 | rexbii | |- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om x = A.g i ( 1st ` u ) ) |
| 88 | 82 87 | orbi12i | |- ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 89 | 88 | rexbii | |- ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 90 | 30 | difexi | |- ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) e. _V |
| 91 | 90 | isseti | |- E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) |
| 92 | 91 | biantru | |- ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) <-> ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
| 93 | 92 | bicomi | |- ( ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) |
| 94 | 93 | rexbii | |- ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) |
| 95 | 30 | rabex | |- { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } e. _V |
| 96 | 95 | isseti | |- E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } |
| 97 | 96 | biantru | |- ( x = A.g i ( 1st ` a ) <-> ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
| 98 | 97 | bicomi | |- ( ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> x = A.g i ( 1st ` a ) ) |
| 99 | 98 | rexbii | |- ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. i e. _om x = A.g i ( 1st ` a ) ) |
| 100 | 94 99 | orbi12i | |- ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) |
| 101 | 100 | rexbii | |- ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) |
| 102 | 77 89 101 | 3bitr4g | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) ) |
| 103 | 19.42v | |- ( E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
|
| 104 | 103 | bicomi | |- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 105 | 104 | rexbii | |- ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` y ) E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 106 | rexcom4 | |- ( E. v e. ( ( M Sat E ) ` y ) E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
|
| 107 | 105 106 | bitri | |- ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 108 | 19.42v | |- ( E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
|
| 109 | 108 | bicomi | |- ( ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 110 | 109 | rexbii | |- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 111 | rexcom4 | |- ( E. i e. _om E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
|
| 112 | 110 111 | bitri | |- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 113 | 107 112 | orbi12i | |- ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 114 | 19.43 | |- ( E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
|
| 115 | 114 | bicomi | |- ( ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 116 | 113 115 | bitri | |- ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 117 | 116 | rexbii | |- ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` y ) E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 118 | rexcom4 | |- ( E. u e. ( ( M Sat E ) ` y ) E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
|
| 119 | 117 118 | bitri | |- ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 120 | 19.42v | |- ( E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
|
| 121 | 120 | bicomi | |- ( ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
| 122 | 121 | rexbii | |- ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. b e. ( ( N Sat F ) ` y ) E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
| 123 | rexcom4 | |- ( E. b e. ( ( N Sat F ) ` y ) E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
|
| 124 | 122 123 | bitri | |- ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
| 125 | 19.42v | |- ( E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
|
| 126 | 125 | bicomi | |- ( ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
| 127 | 126 | rexbii | |- ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. i e. _om E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
| 128 | rexcom4 | |- ( E. i e. _om E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
|
| 129 | 127 128 | bitri | |- ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
| 130 | 124 129 | orbi12i | |- ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 131 | 19.43 | |- ( E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
|
| 132 | 131 | bicomi | |- ( ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 133 | 130 132 | bitri | |- ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 134 | 133 | rexbii | |- ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 135 | rexcom4 | |- ( E. a e. ( ( N Sat F ) ` y ) E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
|
| 136 | 134 135 | bitri | |- ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 137 | 102 119 136 | 3bitr3g | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) ) |
| 138 | 137 | abbidv | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> { x | E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) |
| 139 | dmopab | |- dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } |
|
| 140 | dmopab | |- dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } = { x | E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } |
|
| 141 | 138 139 140 | 3eqtr4g | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) |
| 142 | 63 141 | uneq12d | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( dom ( ( M Sat E ) ` y ) u. dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( dom ( ( N Sat F ) ` y ) u. dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
| 143 | dmun | |- dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( dom ( ( M Sat E ) ` y ) u. dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |
|
| 144 | dmun | |- dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) = ( dom ( ( N Sat F ) ` y ) u. dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) |
|
| 145 | 142 143 144 | 3eqtr4g | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
| 146 | simpl | |- ( ( M e. V /\ E e. W ) -> M e. V ) |
|
| 147 | 146 | adantr | |- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> M e. V ) |
| 148 | simpr | |- ( ( M e. V /\ E e. W ) -> E e. W ) |
|
| 149 | 148 | adantr | |- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> E e. W ) |
| 150 | 48 | satfvsuc | |- ( ( M e. V /\ E e. W /\ y e. _om ) -> ( ( M Sat E ) ` suc y ) = ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 151 | 147 149 65 150 | syl2an23an | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( M Sat E ) ` suc y ) = ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 152 | 151 | dmeqd | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 153 | simprl | |- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> N e. X ) |
|
| 154 | simprr | |- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> F e. Y ) |
|
| 155 | 54 | satfvsuc | |- ( ( N e. X /\ F e. Y /\ y e. _om ) -> ( ( N Sat F ) ` suc y ) = ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
| 156 | 153 154 65 155 | syl2an23an | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( N Sat F ) ` suc y ) = ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
| 157 | 156 | dmeqd | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> dom ( ( N Sat F ) ` suc y ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
| 158 | 152 157 | eqeq12d | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) <-> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) ) |
| 159 | 158 | adantr | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) <-> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) ) |
| 160 | 145 159 | mpbird | |- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) |
| 161 | 160 | ex | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) |
| 162 | 62 161 | syld | |- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) |
| 163 | 162 | ex | |- ( y e. _om -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) |
| 164 | 163 | com23 | |- ( y e. _om -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) |
| 165 | 6 12 18 24 60 164 | finds | |- ( n e. _om -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) |
| 166 | 165 | impcom | |- ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) /\ n e. _om ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) |
| 167 | 166 | ralrimiva | |- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) |