This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the satisfaction predicate as function over wff codes in any model M and any binary relation E on M for a natural number N is a subset of the power set of all mappings from the natural numbers into the model M . (Contributed by AV, 13-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satfrnmapom | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ran ( ( M Sat E ) ` N ) C_ ~P ( M ^m _om ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( a = (/) -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` (/) ) ) |
|
| 2 | 1 | rneqd | |- ( a = (/) -> ran ( ( M Sat E ) ` a ) = ran ( ( M Sat E ) ` (/) ) ) |
| 3 | 2 | eleq2d | |- ( a = (/) -> ( n e. ran ( ( M Sat E ) ` a ) <-> n e. ran ( ( M Sat E ) ` (/) ) ) ) |
| 4 | 3 | imbi1d | |- ( a = (/) -> ( ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) <-> ( n e. ran ( ( M Sat E ) ` (/) ) -> n e. ~P ( M ^m _om ) ) ) ) |
| 5 | 4 | imbi2d | |- ( a = (/) -> ( ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) ) <-> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` (/) ) -> n e. ~P ( M ^m _om ) ) ) ) ) |
| 6 | fveq2 | |- ( a = b -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` b ) ) |
|
| 7 | 6 | rneqd | |- ( a = b -> ran ( ( M Sat E ) ` a ) = ran ( ( M Sat E ) ` b ) ) |
| 8 | 7 | eleq2d | |- ( a = b -> ( n e. ran ( ( M Sat E ) ` a ) <-> n e. ran ( ( M Sat E ) ` b ) ) ) |
| 9 | 8 | imbi1d | |- ( a = b -> ( ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) <-> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) |
| 10 | 9 | imbi2d | |- ( a = b -> ( ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) ) <-> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) ) |
| 11 | fveq2 | |- ( a = suc b -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` suc b ) ) |
|
| 12 | 11 | rneqd | |- ( a = suc b -> ran ( ( M Sat E ) ` a ) = ran ( ( M Sat E ) ` suc b ) ) |
| 13 | 12 | eleq2d | |- ( a = suc b -> ( n e. ran ( ( M Sat E ) ` a ) <-> n e. ran ( ( M Sat E ) ` suc b ) ) ) |
| 14 | 13 | imbi1d | |- ( a = suc b -> ( ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) <-> ( n e. ran ( ( M Sat E ) ` suc b ) -> n e. ~P ( M ^m _om ) ) ) ) |
| 15 | 14 | imbi2d | |- ( a = suc b -> ( ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) ) <-> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` suc b ) -> n e. ~P ( M ^m _om ) ) ) ) ) |
| 16 | fveq2 | |- ( a = N -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` N ) ) |
|
| 17 | 16 | rneqd | |- ( a = N -> ran ( ( M Sat E ) ` a ) = ran ( ( M Sat E ) ` N ) ) |
| 18 | 17 | eleq2d | |- ( a = N -> ( n e. ran ( ( M Sat E ) ` a ) <-> n e. ran ( ( M Sat E ) ` N ) ) ) |
| 19 | 18 | imbi1d | |- ( a = N -> ( ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) <-> ( n e. ran ( ( M Sat E ) ` N ) -> n e. ~P ( M ^m _om ) ) ) ) |
| 20 | 19 | imbi2d | |- ( a = N -> ( ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` a ) -> n e. ~P ( M ^m _om ) ) ) <-> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` N ) -> n e. ~P ( M ^m _om ) ) ) ) ) |
| 21 | eqid | |- ( M Sat E ) = ( M Sat E ) |
|
| 22 | 21 | satfv0 | |- ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` (/) ) = { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } ) |
| 23 | 22 | rneqd | |- ( ( M e. V /\ E e. W ) -> ran ( ( M Sat E ) ` (/) ) = ran { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } ) |
| 24 | 23 | eleq2d | |- ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` (/) ) <-> n e. ran { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } ) ) |
| 25 | rnopab | |- ran { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } = { y | E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } |
|
| 26 | 25 | eleq2i | |- ( n e. ran { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } <-> n e. { y | E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } ) |
| 27 | vex | |- n e. _V |
|
| 28 | eqeq1 | |- ( y = n -> ( y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } <-> n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) ) |
|
| 29 | 28 | anbi2d | |- ( y = n -> ( ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) <-> ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) ) ) |
| 30 | 29 | 2rexbidv | |- ( y = n -> ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) <-> E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) ) ) |
| 31 | 30 | exbidv | |- ( y = n -> ( E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) <-> E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) ) ) |
| 32 | 27 31 | elab | |- ( n e. { y | E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } <-> E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) ) |
| 33 | ovex | |- ( M ^m _om ) e. _V |
|
| 34 | ssrab2 | |- { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } C_ ( M ^m _om ) |
|
| 35 | 33 34 | elpwi2 | |- { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } e. ~P ( M ^m _om ) |
| 36 | eleq1 | |- ( n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } -> ( n e. ~P ( M ^m _om ) <-> { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } e. ~P ( M ^m _om ) ) ) |
|
| 37 | 35 36 | mpbiri | |- ( n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } -> n e. ~P ( M ^m _om ) ) |
| 38 | 37 | adantl | |- ( ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) -> n e. ~P ( M ^m _om ) ) |
| 39 | 38 | a1i | |- ( ( i e. _om /\ j e. _om ) -> ( ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) -> n e. ~P ( M ^m _om ) ) ) |
| 40 | 39 | rexlimivv | |- ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) -> n e. ~P ( M ^m _om ) ) |
| 41 | 40 | exlimiv | |- ( E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ n = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) -> n e. ~P ( M ^m _om ) ) |
| 42 | 32 41 | sylbi | |- ( n e. { y | E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } -> n e. ~P ( M ^m _om ) ) |
| 43 | 42 | a1i | |- ( ( M e. V /\ E e. W ) -> ( n e. { y | E. x E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } -> n e. ~P ( M ^m _om ) ) ) |
| 44 | 26 43 | biimtrid | |- ( ( M e. V /\ E e. W ) -> ( n e. ran { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { f e. ( M ^m _om ) | ( f ` i ) E ( f ` j ) } ) } -> n e. ~P ( M ^m _om ) ) ) |
| 45 | 24 44 | sylbid | |- ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` (/) ) -> n e. ~P ( M ^m _om ) ) ) |
| 46 | 21 | satfvsuc | |- ( ( M e. V /\ E e. W /\ b e. _om ) -> ( ( M Sat E ) ` suc b ) = ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 47 | 46 | 3expa | |- ( ( ( M e. V /\ E e. W ) /\ b e. _om ) -> ( ( M Sat E ) ` suc b ) = ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 48 | 47 | rneqd | |- ( ( ( M e. V /\ E e. W ) /\ b e. _om ) -> ran ( ( M Sat E ) ` suc b ) = ran ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 49 | rnun | |- ran ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( ran ( ( M Sat E ) ` b ) u. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |
|
| 50 | 48 49 | eqtrdi | |- ( ( ( M e. V /\ E e. W ) /\ b e. _om ) -> ran ( ( M Sat E ) ` suc b ) = ( ran ( ( M Sat E ) ` b ) u. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 51 | 50 | eleq2d | |- ( ( ( M e. V /\ E e. W ) /\ b e. _om ) -> ( n e. ran ( ( M Sat E ) ` suc b ) <-> n e. ( ran ( ( M Sat E ) ` b ) u. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) ) |
| 52 | elun | |- ( n e. ( ran ( ( M Sat E ) ` b ) u. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ n e. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
|
| 53 | rnopab | |- ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { y | E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } |
|
| 54 | 53 | eleq2i | |- ( n e. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> n e. { y | E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |
| 55 | eqeq1 | |- ( y = n -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
|
| 56 | 55 | anbi2d | |- ( y = n -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
| 57 | 56 | rexbidv | |- ( y = n -> ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
| 58 | eqeq1 | |- ( y = n -> ( y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
|
| 59 | 58 | anbi2d | |- ( y = n -> ( ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 60 | 59 | rexbidv | |- ( y = n -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 61 | 57 60 | orbi12d | |- ( y = n -> ( ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
| 62 | 61 | rexbidv | |- ( y = n -> ( E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
| 63 | 62 | exbidv | |- ( y = n -> ( E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
| 64 | 27 63 | elab | |- ( n e. { y | E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 65 | 54 64 | bitri | |- ( n e. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } <-> E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 66 | 65 | orbi2i | |- ( ( n e. ran ( ( M Sat E ) ` b ) \/ n e. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
| 67 | 52 66 | bitri | |- ( n e. ( ran ( ( M Sat E ) ` b ) u. ran { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
| 68 | 51 67 | bitrdi | |- ( ( ( M e. V /\ E e. W ) /\ b e. _om ) -> ( n e. ran ( ( M Sat E ) ` suc b ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
| 69 | 68 | expcom | |- ( b e. _om -> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` suc b ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) ) |
| 70 | 69 | adantr | |- ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) -> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` suc b ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) ) |
| 71 | 70 | imp | |- ( ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) /\ ( M e. V /\ E e. W ) ) -> ( n e. ran ( ( M Sat E ) ` suc b ) <-> ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
| 72 | simpr | |- ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) -> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) |
|
| 73 | 72 | imp | |- ( ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) /\ ( M e. V /\ E e. W ) ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) |
| 74 | difss | |- ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) C_ ( M ^m _om ) |
|
| 75 | 33 74 | elpwi2 | |- ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. ~P ( M ^m _om ) |
| 76 | eleq1 | |- ( n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) -> ( n e. ~P ( M ^m _om ) <-> ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. ~P ( M ^m _om ) ) ) |
|
| 77 | 75 76 | mpbiri | |- ( n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) -> n e. ~P ( M ^m _om ) ) |
| 78 | 77 | adantl | |- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> n e. ~P ( M ^m _om ) ) |
| 79 | 78 | adantl | |- ( ( v e. ( ( M Sat E ) ` b ) /\ ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) -> n e. ~P ( M ^m _om ) ) |
| 80 | 79 | rexlimiva | |- ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) -> n e. ~P ( M ^m _om ) ) |
| 81 | ssrab2 | |- { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } C_ ( M ^m _om ) |
|
| 82 | 33 81 | elpwi2 | |- { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. ~P ( M ^m _om ) |
| 83 | eleq1 | |- ( n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> ( n e. ~P ( M ^m _om ) <-> { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. ~P ( M ^m _om ) ) ) |
|
| 84 | 82 83 | mpbiri | |- ( n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } -> n e. ~P ( M ^m _om ) ) |
| 85 | 84 | adantl | |- ( ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> n e. ~P ( M ^m _om ) ) |
| 86 | 85 | a1i | |- ( i e. _om -> ( ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> n e. ~P ( M ^m _om ) ) ) |
| 87 | 86 | rexlimiv | |- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) -> n e. ~P ( M ^m _om ) ) |
| 88 | 80 87 | jaoi | |- ( ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> n e. ~P ( M ^m _om ) ) |
| 89 | 88 | a1i | |- ( u e. ( ( M Sat E ) ` b ) -> ( ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> n e. ~P ( M ^m _om ) ) ) |
| 90 | 89 | rexlimiv | |- ( E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> n e. ~P ( M ^m _om ) ) |
| 91 | 90 | exlimiv | |- ( E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> n e. ~P ( M ^m _om ) ) |
| 92 | 91 | a1i | |- ( ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) /\ ( M e. V /\ E e. W ) ) -> ( E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) -> n e. ~P ( M ^m _om ) ) ) |
| 93 | 73 92 | jaod | |- ( ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) /\ ( M e. V /\ E e. W ) ) -> ( ( n e. ran ( ( M Sat E ) ` b ) \/ E. x E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ n = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ n = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) -> n e. ~P ( M ^m _om ) ) ) |
| 94 | 71 93 | sylbid | |- ( ( ( b e. _om /\ ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) ) /\ ( M e. V /\ E e. W ) ) -> ( n e. ran ( ( M Sat E ) ` suc b ) -> n e. ~P ( M ^m _om ) ) ) |
| 95 | 94 | exp31 | |- ( b e. _om -> ( ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` b ) -> n e. ~P ( M ^m _om ) ) ) -> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` suc b ) -> n e. ~P ( M ^m _om ) ) ) ) ) |
| 96 | 5 10 15 20 45 95 | finds | |- ( N e. _om -> ( ( M e. V /\ E e. W ) -> ( n e. ran ( ( M Sat E ) ` N ) -> n e. ~P ( M ^m _om ) ) ) ) |
| 97 | 96 | com12 | |- ( ( M e. V /\ E e. W ) -> ( N e. _om -> ( n e. ran ( ( M Sat E ) ` N ) -> n e. ~P ( M ^m _om ) ) ) ) |
| 98 | 97 | 3impia | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( n e. ran ( ( M Sat E ) ` N ) -> n e. ~P ( M ^m _om ) ) ) |
| 99 | 98 | ssrdv | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ran ( ( M Sat E ) ` N ) C_ ~P ( M ^m _om ) ) |