This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simplified satisfaction predicate for wff codes of height 0. (Contributed by AV, 4-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satefvfmla0 | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( M SatE X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) e. ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satefv | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( M SatE X ) = ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` X ) ) |
|
| 2 | incom | |- ( _E i^i ( M X. M ) ) = ( ( M X. M ) i^i _E ) |
|
| 3 | sqxpexg | |- ( M e. V -> ( M X. M ) e. _V ) |
|
| 4 | inex1g | |- ( ( M X. M ) e. _V -> ( ( M X. M ) i^i _E ) e. _V ) |
|
| 5 | 3 4 | syl | |- ( M e. V -> ( ( M X. M ) i^i _E ) e. _V ) |
| 6 | 2 5 | eqeltrid | |- ( M e. V -> ( _E i^i ( M X. M ) ) e. _V ) |
| 7 | 6 | ancli | |- ( M e. V -> ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) ) |
| 8 | 7 | adantr | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) ) |
| 9 | satom | |- ( ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) -> ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) = U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) ) |
|
| 10 | 8 9 | syl | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) = U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) ) |
| 11 | 10 | fveq1d | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` X ) = ( U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) ` X ) ) |
| 12 | satfun | |- ( ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V ) -> ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) ) |
|
| 13 | 8 12 | syl | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) ) |
| 14 | 13 | ffund | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> Fun ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ) |
| 15 | 10 | eqcomd | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) = ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ) |
| 16 | 15 | funeqd | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( Fun U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) <-> Fun ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ) ) |
| 17 | 14 16 | mpbird | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> Fun U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) ) |
| 18 | peano1 | |- (/) e. _om |
|
| 19 | 18 | a1i | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> (/) e. _om ) |
| 20 | 18 | a1i | |- ( M e. V -> (/) e. _om ) |
| 21 | satfdmfmla | |- ( ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V /\ (/) e. _om ) -> dom ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) = ( Fmla ` (/) ) ) |
|
| 22 | 6 20 21 | mpd3an23 | |- ( M e. V -> dom ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) = ( Fmla ` (/) ) ) |
| 23 | 22 | eqcomd | |- ( M e. V -> ( Fmla ` (/) ) = dom ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) ) |
| 24 | 23 | eleq2d | |- ( M e. V -> ( X e. ( Fmla ` (/) ) <-> X e. dom ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) ) ) |
| 25 | 24 | biimpa | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> X e. dom ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) ) |
| 26 | eqid | |- U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) = U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) |
|
| 27 | 26 | fviunfun | |- ( ( Fun U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) /\ (/) e. _om /\ X e. dom ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) ) -> ( U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) ` X ) = ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) ` X ) ) |
| 28 | 17 19 25 27 | syl3anc | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( U_ i e. _om ( ( M Sat ( _E i^i ( M X. M ) ) ) ` i ) ` X ) = ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) ` X ) ) |
| 29 | 11 28 | eqtrd | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` X ) = ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) ` X ) ) |
| 30 | simpl | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> M e. V ) |
|
| 31 | 6 | adantr | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( _E i^i ( M X. M ) ) e. _V ) |
| 32 | simpr | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> X e. ( Fmla ` (/) ) ) |
|
| 33 | eqid | |- ( M Sat ( _E i^i ( M X. M ) ) ) = ( M Sat ( _E i^i ( M X. M ) ) ) |
|
| 34 | 33 | satfv0fvfmla0 | |- ( ( M e. V /\ ( _E i^i ( M X. M ) ) e. _V /\ X e. ( Fmla ` (/) ) ) -> ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) ` X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) ( _E i^i ( M X. M ) ) ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) |
| 35 | 30 31 32 34 | syl3anc | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) ` X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) ( _E i^i ( M X. M ) ) ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) |
| 36 | elmapi | |- ( a e. ( M ^m _om ) -> a : _om --> M ) |
|
| 37 | simpl | |- ( ( a : _om --> M /\ ( M e. V /\ X e. ( Fmla ` (/) ) ) ) -> a : _om --> M ) |
|
| 38 | fmla0xp | |- ( Fmla ` (/) ) = ( { (/) } X. ( _om X. _om ) ) |
|
| 39 | 38 | eleq2i | |- ( X e. ( Fmla ` (/) ) <-> X e. ( { (/) } X. ( _om X. _om ) ) ) |
| 40 | elxp | |- ( X e. ( { (/) } X. ( _om X. _om ) ) <-> E. x E. y ( X = <. x , y >. /\ ( x e. { (/) } /\ y e. ( _om X. _om ) ) ) ) |
|
| 41 | 39 40 | bitri | |- ( X e. ( Fmla ` (/) ) <-> E. x E. y ( X = <. x , y >. /\ ( x e. { (/) } /\ y e. ( _om X. _om ) ) ) ) |
| 42 | xp1st | |- ( y e. ( _om X. _om ) -> ( 1st ` y ) e. _om ) |
|
| 43 | 42 | ad2antll | |- ( ( X = <. x , y >. /\ ( x e. { (/) } /\ y e. ( _om X. _om ) ) ) -> ( 1st ` y ) e. _om ) |
| 44 | vex | |- x e. _V |
|
| 45 | vex | |- y e. _V |
|
| 46 | 44 45 | op2ndd | |- ( X = <. x , y >. -> ( 2nd ` X ) = y ) |
| 47 | 46 | fveq2d | |- ( X = <. x , y >. -> ( 1st ` ( 2nd ` X ) ) = ( 1st ` y ) ) |
| 48 | 47 | eleq1d | |- ( X = <. x , y >. -> ( ( 1st ` ( 2nd ` X ) ) e. _om <-> ( 1st ` y ) e. _om ) ) |
| 49 | 48 | adantr | |- ( ( X = <. x , y >. /\ ( x e. { (/) } /\ y e. ( _om X. _om ) ) ) -> ( ( 1st ` ( 2nd ` X ) ) e. _om <-> ( 1st ` y ) e. _om ) ) |
| 50 | 43 49 | mpbird | |- ( ( X = <. x , y >. /\ ( x e. { (/) } /\ y e. ( _om X. _om ) ) ) -> ( 1st ` ( 2nd ` X ) ) e. _om ) |
| 51 | 50 | exlimivv | |- ( E. x E. y ( X = <. x , y >. /\ ( x e. { (/) } /\ y e. ( _om X. _om ) ) ) -> ( 1st ` ( 2nd ` X ) ) e. _om ) |
| 52 | 41 51 | sylbi | |- ( X e. ( Fmla ` (/) ) -> ( 1st ` ( 2nd ` X ) ) e. _om ) |
| 53 | 52 | ad2antll | |- ( ( a : _om --> M /\ ( M e. V /\ X e. ( Fmla ` (/) ) ) ) -> ( 1st ` ( 2nd ` X ) ) e. _om ) |
| 54 | 37 53 | ffvelcdmd | |- ( ( a : _om --> M /\ ( M e. V /\ X e. ( Fmla ` (/) ) ) ) -> ( a ` ( 1st ` ( 2nd ` X ) ) ) e. M ) |
| 55 | xp2nd | |- ( y e. ( _om X. _om ) -> ( 2nd ` y ) e. _om ) |
|
| 56 | 55 | ad2antll | |- ( ( X = <. x , y >. /\ ( x e. { (/) } /\ y e. ( _om X. _om ) ) ) -> ( 2nd ` y ) e. _om ) |
| 57 | 46 | fveq2d | |- ( X = <. x , y >. -> ( 2nd ` ( 2nd ` X ) ) = ( 2nd ` y ) ) |
| 58 | 57 | eleq1d | |- ( X = <. x , y >. -> ( ( 2nd ` ( 2nd ` X ) ) e. _om <-> ( 2nd ` y ) e. _om ) ) |
| 59 | 58 | adantr | |- ( ( X = <. x , y >. /\ ( x e. { (/) } /\ y e. ( _om X. _om ) ) ) -> ( ( 2nd ` ( 2nd ` X ) ) e. _om <-> ( 2nd ` y ) e. _om ) ) |
| 60 | 56 59 | mpbird | |- ( ( X = <. x , y >. /\ ( x e. { (/) } /\ y e. ( _om X. _om ) ) ) -> ( 2nd ` ( 2nd ` X ) ) e. _om ) |
| 61 | 60 | exlimivv | |- ( E. x E. y ( X = <. x , y >. /\ ( x e. { (/) } /\ y e. ( _om X. _om ) ) ) -> ( 2nd ` ( 2nd ` X ) ) e. _om ) |
| 62 | 41 61 | sylbi | |- ( X e. ( Fmla ` (/) ) -> ( 2nd ` ( 2nd ` X ) ) e. _om ) |
| 63 | 62 | ad2antll | |- ( ( a : _om --> M /\ ( M e. V /\ X e. ( Fmla ` (/) ) ) ) -> ( 2nd ` ( 2nd ` X ) ) e. _om ) |
| 64 | 37 63 | ffvelcdmd | |- ( ( a : _om --> M /\ ( M e. V /\ X e. ( Fmla ` (/) ) ) ) -> ( a ` ( 2nd ` ( 2nd ` X ) ) ) e. M ) |
| 65 | 54 64 | jca | |- ( ( a : _om --> M /\ ( M e. V /\ X e. ( Fmla ` (/) ) ) ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) e. M /\ ( a ` ( 2nd ` ( 2nd ` X ) ) ) e. M ) ) |
| 66 | 65 | ex | |- ( a : _om --> M -> ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) e. M /\ ( a ` ( 2nd ` ( 2nd ` X ) ) ) e. M ) ) ) |
| 67 | 36 66 | syl | |- ( a e. ( M ^m _om ) -> ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) e. M /\ ( a ` ( 2nd ` ( 2nd ` X ) ) ) e. M ) ) ) |
| 68 | 67 | impcom | |- ( ( ( M e. V /\ X e. ( Fmla ` (/) ) ) /\ a e. ( M ^m _om ) ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) e. M /\ ( a ` ( 2nd ` ( 2nd ` X ) ) ) e. M ) ) |
| 69 | brinxp | |- ( ( ( a ` ( 1st ` ( 2nd ` X ) ) ) e. M /\ ( a ` ( 2nd ` ( 2nd ` X ) ) ) e. M ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) _E ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` ( 1st ` ( 2nd ` X ) ) ) ( _E i^i ( M X. M ) ) ( a ` ( 2nd ` ( 2nd ` X ) ) ) ) ) |
|
| 70 | 69 | bicomd | |- ( ( ( a ` ( 1st ` ( 2nd ` X ) ) ) e. M /\ ( a ` ( 2nd ` ( 2nd ` X ) ) ) e. M ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) ( _E i^i ( M X. M ) ) ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` ( 1st ` ( 2nd ` X ) ) ) _E ( a ` ( 2nd ` ( 2nd ` X ) ) ) ) ) |
| 71 | 68 70 | syl | |- ( ( ( M e. V /\ X e. ( Fmla ` (/) ) ) /\ a e. ( M ^m _om ) ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) ( _E i^i ( M X. M ) ) ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` ( 1st ` ( 2nd ` X ) ) ) _E ( a ` ( 2nd ` ( 2nd ` X ) ) ) ) ) |
| 72 | fvex | |- ( a ` ( 2nd ` ( 2nd ` X ) ) ) e. _V |
|
| 73 | 72 | epeli | |- ( ( a ` ( 1st ` ( 2nd ` X ) ) ) _E ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` ( 1st ` ( 2nd ` X ) ) ) e. ( a ` ( 2nd ` ( 2nd ` X ) ) ) ) |
| 74 | 71 73 | bitrdi | |- ( ( ( M e. V /\ X e. ( Fmla ` (/) ) ) /\ a e. ( M ^m _om ) ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) ( _E i^i ( M X. M ) ) ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` ( 1st ` ( 2nd ` X ) ) ) e. ( a ` ( 2nd ` ( 2nd ` X ) ) ) ) ) |
| 75 | 74 | rabbidva | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) ( _E i^i ( M X. M ) ) ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) e. ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) |
| 76 | 35 75 | eqtrd | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` (/) ) ` X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) e. ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) |
| 77 | 29 76 | eqtrd | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) e. ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) |
| 78 | 1 77 | eqtrd | |- ( ( M e. V /\ X e. ( Fmla ` (/) ) ) -> ( M SatE X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) e. ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) |