This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over a wff code at (/) . (Contributed by AV, 2-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satfv0fv.s | |- S = ( M Sat E ) |
|
| Assertion | satfv0fvfmla0 | |- ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> ( ( S ` (/) ) ` X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv0fv.s | |- S = ( M Sat E ) |
|
| 2 | satfv0fun | |- ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` (/) ) ) |
|
| 3 | 1 | fveq1i | |- ( S ` (/) ) = ( ( M Sat E ) ` (/) ) |
| 4 | 3 | funeqi | |- ( Fun ( S ` (/) ) <-> Fun ( ( M Sat E ) ` (/) ) ) |
| 5 | 2 4 | sylibr | |- ( ( M e. V /\ E e. W ) -> Fun ( S ` (/) ) ) |
| 6 | 5 | 3adant3 | |- ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> Fun ( S ` (/) ) ) |
| 7 | fmla0 | |- ( Fmla ` (/) ) = { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } |
|
| 8 | 7 | eleq2i | |- ( X e. ( Fmla ` (/) ) <-> X e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } ) |
| 9 | eqeq1 | |- ( x = X -> ( x = ( i e.g j ) <-> X = ( i e.g j ) ) ) |
|
| 10 | 9 | 2rexbidv | |- ( x = X -> ( E. i e. _om E. j e. _om x = ( i e.g j ) <-> E. i e. _om E. j e. _om X = ( i e.g j ) ) ) |
| 11 | 10 | elrab | |- ( X e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } <-> ( X e. _V /\ E. i e. _om E. j e. _om X = ( i e.g j ) ) ) |
| 12 | 8 11 | bitri | |- ( X e. ( Fmla ` (/) ) <-> ( X e. _V /\ E. i e. _om E. j e. _om X = ( i e.g j ) ) ) |
| 13 | simpr | |- ( ( ( i e. _om /\ j e. _om ) /\ X = ( i e.g j ) ) -> X = ( i e.g j ) ) |
|
| 14 | goel | |- ( ( i e. _om /\ j e. _om ) -> ( i e.g j ) = <. (/) , <. i , j >. >. ) |
|
| 15 | 14 | eqeq2d | |- ( ( i e. _om /\ j e. _om ) -> ( X = ( i e.g j ) <-> X = <. (/) , <. i , j >. >. ) ) |
| 16 | 2fveq3 | |- ( X = <. (/) , <. i , j >. >. -> ( 1st ` ( 2nd ` X ) ) = ( 1st ` ( 2nd ` <. (/) , <. i , j >. >. ) ) ) |
|
| 17 | 0ex | |- (/) e. _V |
|
| 18 | opex | |- <. i , j >. e. _V |
|
| 19 | 17 18 | op2nd | |- ( 2nd ` <. (/) , <. i , j >. >. ) = <. i , j >. |
| 20 | 19 | fveq2i | |- ( 1st ` ( 2nd ` <. (/) , <. i , j >. >. ) ) = ( 1st ` <. i , j >. ) |
| 21 | vex | |- i e. _V |
|
| 22 | vex | |- j e. _V |
|
| 23 | 21 22 | op1st | |- ( 1st ` <. i , j >. ) = i |
| 24 | 20 23 | eqtri | |- ( 1st ` ( 2nd ` <. (/) , <. i , j >. >. ) ) = i |
| 25 | 16 24 | eqtrdi | |- ( X = <. (/) , <. i , j >. >. -> ( 1st ` ( 2nd ` X ) ) = i ) |
| 26 | 25 | fveq2d | |- ( X = <. (/) , <. i , j >. >. -> ( a ` ( 1st ` ( 2nd ` X ) ) ) = ( a ` i ) ) |
| 27 | 2fveq3 | |- ( X = <. (/) , <. i , j >. >. -> ( 2nd ` ( 2nd ` X ) ) = ( 2nd ` ( 2nd ` <. (/) , <. i , j >. >. ) ) ) |
|
| 28 | 19 | fveq2i | |- ( 2nd ` ( 2nd ` <. (/) , <. i , j >. >. ) ) = ( 2nd ` <. i , j >. ) |
| 29 | 21 22 | op2nd | |- ( 2nd ` <. i , j >. ) = j |
| 30 | 28 29 | eqtri | |- ( 2nd ` ( 2nd ` <. (/) , <. i , j >. >. ) ) = j |
| 31 | 27 30 | eqtrdi | |- ( X = <. (/) , <. i , j >. >. -> ( 2nd ` ( 2nd ` X ) ) = j ) |
| 32 | 31 | fveq2d | |- ( X = <. (/) , <. i , j >. >. -> ( a ` ( 2nd ` ( 2nd ` X ) ) ) = ( a ` j ) ) |
| 33 | 26 32 | breq12d | |- ( X = <. (/) , <. i , j >. >. -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` i ) E ( a ` j ) ) ) |
| 34 | 15 33 | biimtrdi | |- ( ( i e. _om /\ j e. _om ) -> ( X = ( i e.g j ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` i ) E ( a ` j ) ) ) ) |
| 35 | 34 | imp | |- ( ( ( i e. _om /\ j e. _om ) /\ X = ( i e.g j ) ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` i ) E ( a ` j ) ) ) |
| 36 | 35 | rabbidv | |- ( ( ( i e. _om /\ j e. _om ) /\ X = ( i e.g j ) ) -> { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) |
| 37 | 13 36 | jca | |- ( ( ( i e. _om /\ j e. _om ) /\ X = ( i e.g j ) ) -> ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) |
| 38 | 37 | ex | |- ( ( i e. _om /\ j e. _om ) -> ( X = ( i e.g j ) -> ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) |
| 39 | 38 | reximdva | |- ( i e. _om -> ( E. j e. _om X = ( i e.g j ) -> E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) |
| 40 | 39 | reximia | |- ( E. i e. _om E. j e. _om X = ( i e.g j ) -> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) |
| 41 | 12 40 | simplbiim | |- ( X e. ( Fmla ` (/) ) -> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) |
| 42 | 41 | 3ad2ant3 | |- ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) |
| 43 | simp3 | |- ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> X e. ( Fmla ` (/) ) ) |
|
| 44 | ovex | |- ( M ^m _om ) e. _V |
|
| 45 | 44 | rabex | |- { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } e. _V |
| 46 | eqeq1 | |- ( y = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } -> ( y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } <-> { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) |
|
| 47 | 9 46 | bi2anan9 | |- ( ( x = X /\ y = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) -> ( ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) <-> ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) |
| 48 | 47 | 2rexbidv | |- ( ( x = X /\ y = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) -> ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) <-> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) |
| 49 | 48 | opelopabga | |- ( ( X e. ( Fmla ` (/) ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } e. _V ) -> ( <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } <-> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) |
| 50 | 43 45 49 | sylancl | |- ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> ( <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } <-> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) |
| 51 | 42 50 | mpbird | |- ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |
| 52 | 1 | satfv0 | |- ( ( M e. V /\ E e. W ) -> ( S ` (/) ) = { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |
| 53 | 52 | eleq2d | |- ( ( M e. V /\ E e. W ) -> ( <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. ( S ` (/) ) <-> <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) ) |
| 54 | 53 | 3adant3 | |- ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> ( <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. ( S ` (/) ) <-> <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) ) |
| 55 | 51 54 | mpbird | |- ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. ( S ` (/) ) ) |
| 56 | funopfv | |- ( Fun ( S ` (/) ) -> ( <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. ( S ` (/) ) -> ( ( S ` (/) ) ` X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) ) |
|
| 57 | 6 55 56 | sylc | |- ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> ( ( S ` (/) ) ` X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) |