This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simplified satisfaction predicate as function over wff codes in the model M at the code U . (Contributed by AV, 30-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satefv | |- ( ( M e. V /\ U e. W ) -> ( M SatE U ) = ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sate | |- SatE = ( m e. _V , u e. _V |-> ( ( ( m Sat ( _E i^i ( m X. m ) ) ) ` _om ) ` u ) ) |
|
| 2 | 1 | a1i | |- ( ( M e. V /\ U e. W ) -> SatE = ( m e. _V , u e. _V |-> ( ( ( m Sat ( _E i^i ( m X. m ) ) ) ` _om ) ` u ) ) ) |
| 3 | id | |- ( m = M -> m = M ) |
|
| 4 | 3 | sqxpeqd | |- ( m = M -> ( m X. m ) = ( M X. M ) ) |
| 5 | 4 | ineq2d | |- ( m = M -> ( _E i^i ( m X. m ) ) = ( _E i^i ( M X. M ) ) ) |
| 6 | 3 5 | oveq12d | |- ( m = M -> ( m Sat ( _E i^i ( m X. m ) ) ) = ( M Sat ( _E i^i ( M X. M ) ) ) ) |
| 7 | 6 | fveq1d | |- ( m = M -> ( ( m Sat ( _E i^i ( m X. m ) ) ) ` _om ) = ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ) |
| 8 | 7 | adantr | |- ( ( m = M /\ u = U ) -> ( ( m Sat ( _E i^i ( m X. m ) ) ) ` _om ) = ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ) |
| 9 | simpr | |- ( ( m = M /\ u = U ) -> u = U ) |
|
| 10 | 8 9 | fveq12d | |- ( ( m = M /\ u = U ) -> ( ( ( m Sat ( _E i^i ( m X. m ) ) ) ` _om ) ` u ) = ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) |
| 11 | 10 | adantl | |- ( ( ( M e. V /\ U e. W ) /\ ( m = M /\ u = U ) ) -> ( ( ( m Sat ( _E i^i ( m X. m ) ) ) ` _om ) ` u ) = ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) |
| 12 | elex | |- ( M e. V -> M e. _V ) |
|
| 13 | 12 | adantr | |- ( ( M e. V /\ U e. W ) -> M e. _V ) |
| 14 | elex | |- ( U e. W -> U e. _V ) |
|
| 15 | 14 | adantl | |- ( ( M e. V /\ U e. W ) -> U e. _V ) |
| 16 | fvexd | |- ( ( M e. V /\ U e. W ) -> ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) e. _V ) |
|
| 17 | 2 11 13 15 16 | ovmpod | |- ( ( M e. V /\ U e. W ) -> ( M SatE U ) = ( ( ( M Sat ( _E i^i ( M X. M ) ) ) ` _om ) ` U ) ) |