This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrnval.1 | |- X = ( RR ^m I ) |
|
| Assertion | rrnval | |- ( I e. Fin -> ( Rn ` I ) = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnval.1 | |- X = ( RR ^m I ) |
|
| 2 | oveq2 | |- ( i = I -> ( RR ^m i ) = ( RR ^m I ) ) |
|
| 3 | 2 1 | eqtr4di | |- ( i = I -> ( RR ^m i ) = X ) |
| 4 | sumeq1 | |- ( i = I -> sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
|
| 5 | 4 | fveq2d | |- ( i = I -> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 6 | 3 3 5 | mpoeq123dv | |- ( i = I -> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 7 | df-rrn | |- Rn = ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
|
| 8 | fvrn0 | |- ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) e. ( ran sqrt u. { (/) } ) |
|
| 9 | 8 | rgen2w | |- A. x e. X A. y e. X ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) e. ( ran sqrt u. { (/) } ) |
| 10 | eqid | |- ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
|
| 11 | 10 | fmpo | |- ( A. x e. X A. y e. X ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) e. ( ran sqrt u. { (/) } ) <-> ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) : ( X X. X ) --> ( ran sqrt u. { (/) } ) ) |
| 12 | 9 11 | mpbi | |- ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) : ( X X. X ) --> ( ran sqrt u. { (/) } ) |
| 13 | ovex | |- ( RR ^m I ) e. _V |
|
| 14 | 1 13 | eqeltri | |- X e. _V |
| 15 | 14 14 | xpex | |- ( X X. X ) e. _V |
| 16 | cnex | |- CC e. _V |
|
| 17 | sqrtf | |- sqrt : CC --> CC |
|
| 18 | frn | |- ( sqrt : CC --> CC -> ran sqrt C_ CC ) |
|
| 19 | 17 18 | ax-mp | |- ran sqrt C_ CC |
| 20 | 16 19 | ssexi | |- ran sqrt e. _V |
| 21 | p0ex | |- { (/) } e. _V |
|
| 22 | 20 21 | unex | |- ( ran sqrt u. { (/) } ) e. _V |
| 23 | fex2 | |- ( ( ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) : ( X X. X ) --> ( ran sqrt u. { (/) } ) /\ ( X X. X ) e. _V /\ ( ran sqrt u. { (/) } ) e. _V ) -> ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) e. _V ) |
|
| 24 | 12 15 22 23 | mp3an | |- ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) e. _V |
| 25 | 6 7 24 | fvmpt | |- ( I e. Fin -> ( Rn ` I ) = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |