This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxdsfi.h | |- H = ( RR^ ` I ) |
|
| rrxdsfi.b | |- B = ( RR ^m I ) |
||
| Assertion | rrxdsfi | |- ( I e. Fin -> ( dist ` H ) = ( f e. B , g e. B |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxdsfi.h | |- H = ( RR^ ` I ) |
|
| 2 | rrxdsfi.b | |- B = ( RR ^m I ) |
|
| 3 | id | |- ( I e. Fin -> I e. Fin ) |
|
| 4 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 5 | 3 1 4 | rrxbasefi | |- ( I e. Fin -> ( Base ` H ) = ( RR ^m I ) ) |
| 6 | 2 5 | eqtr4id | |- ( I e. Fin -> B = ( Base ` H ) ) |
| 7 | 6 | adantr | |- ( ( I e. Fin /\ f e. B ) -> B = ( Base ` H ) ) |
| 8 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 9 | 8 | oveq1i | |- ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( ( CCfld |`s RR ) gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
| 10 | simp1 | |- ( ( I e. Fin /\ f e. B /\ g e. B ) -> I e. Fin ) |
|
| 11 | simpr | |- ( ( I e. Fin /\ f e. B ) -> f e. B ) |
|
| 12 | 11 2 | eleqtrdi | |- ( ( I e. Fin /\ f e. B ) -> f e. ( RR ^m I ) ) |
| 13 | 12 | 3adant3 | |- ( ( I e. Fin /\ f e. B /\ g e. B ) -> f e. ( RR ^m I ) ) |
| 14 | elmapi | |- ( f e. ( RR ^m I ) -> f : I --> RR ) |
|
| 15 | 13 14 | syl | |- ( ( I e. Fin /\ f e. B /\ g e. B ) -> f : I --> RR ) |
| 16 | 15 | ffvelcdmda | |- ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( f ` k ) e. RR ) |
| 17 | simpr | |- ( ( I e. Fin /\ g e. B ) -> g e. B ) |
|
| 18 | 17 2 | eleqtrdi | |- ( ( I e. Fin /\ g e. B ) -> g e. ( RR ^m I ) ) |
| 19 | 18 | 3adant2 | |- ( ( I e. Fin /\ f e. B /\ g e. B ) -> g e. ( RR ^m I ) ) |
| 20 | elmapi | |- ( g e. ( RR ^m I ) -> g : I --> RR ) |
|
| 21 | 19 20 | syl | |- ( ( I e. Fin /\ f e. B /\ g e. B ) -> g : I --> RR ) |
| 22 | 21 | ffvelcdmda | |- ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( g ` k ) e. RR ) |
| 23 | 16 22 | resubcld | |- ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( ( f ` k ) - ( g ` k ) ) e. RR ) |
| 24 | 23 | resqcld | |- ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) e. RR ) |
| 25 | 10 24 | regsumfsum | |- ( ( I e. Fin /\ f e. B /\ g e. B ) -> ( ( CCfld |`s RR ) gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) |
| 26 | 9 25 | eqtr2id | |- ( ( I e. Fin /\ f e. B /\ g e. B ) -> sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 27 | 26 | fveq2d | |- ( ( I e. Fin /\ f e. B /\ g e. B ) -> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) |
| 28 | 27 | 3expb | |- ( ( I e. Fin /\ ( f e. B /\ g e. B ) ) -> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) |
| 29 | 6 7 28 | mpoeq123dva | |- ( I e. Fin -> ( f e. B , g e. B |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( f e. ( Base ` H ) , g e. ( Base ` H ) |-> ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) ) |
| 30 | 1 4 | rrxds | |- ( I e. Fin -> ( f e. ( Base ` H ) , g e. ( Base ` H ) |-> ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) = ( dist ` H ) ) |
| 31 | 29 30 | eqtr2d | |- ( I e. Fin -> ( dist ` H ) = ( f e. B , g e. B |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |