This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrxmetfi.1 | |- D = ( dist ` ( RR^ ` I ) ) |
|
| Assertion | rrxmetfi | |- ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmetfi.1 | |- D = ( dist ` ( RR^ ` I ) ) |
|
| 2 | eqid | |- { h e. ( RR ^m I ) | h finSupp 0 } = { h e. ( RR ^m I ) | h finSupp 0 } |
|
| 3 | 2 1 | rrxmet | |- ( I e. Fin -> D e. ( Met ` { h e. ( RR ^m I ) | h finSupp 0 } ) ) |
| 4 | eqid | |- ( RR^ ` I ) = ( RR^ ` I ) |
|
| 5 | eqid | |- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) |
|
| 6 | 4 5 | rrxbase | |- ( I e. Fin -> ( Base ` ( RR^ ` I ) ) = { h e. ( RR ^m I ) | h finSupp 0 } ) |
| 7 | id | |- ( I e. Fin -> I e. Fin ) |
|
| 8 | 7 4 5 | rrxbasefi | |- ( I e. Fin -> ( Base ` ( RR^ ` I ) ) = ( RR ^m I ) ) |
| 9 | 6 8 | eqtr3d | |- ( I e. Fin -> { h e. ( RR ^m I ) | h finSupp 0 } = ( RR ^m I ) ) |
| 10 | 9 | fveq2d | |- ( I e. Fin -> ( Met ` { h e. ( RR ^m I ) | h finSupp 0 } ) = ( Met ` ( RR ^m I ) ) ) |
| 11 | 3 10 | eleqtrd | |- ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) ) |