This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxsca.r | |- H = ( RR^ ` I ) |
|
| rrx0.0 | |- .0. = ( I X. { 0 } ) |
||
| Assertion | rrx0 | |- ( I e. V -> ( 0g ` H ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxsca.r | |- H = ( RR^ ` I ) |
|
| 2 | rrx0.0 | |- .0. = ( I X. { 0 } ) |
|
| 3 | 1 | rrxval | |- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 4 | 3 | fveq2d | |- ( I e. V -> ( 0g ` H ) = ( 0g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 5 | eqid | |- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
|
| 6 | eqid | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
|
| 7 | eqid | |- ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( RRfld freeLMod I ) ) |
|
| 8 | 5 6 7 | tcphval | |- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) |
| 9 | 8 | a1i | |- ( I e. V -> ( toCPreHil ` ( RRfld freeLMod I ) ) = ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) |
| 10 | 9 | fveq2d | |- ( I e. V -> ( 0g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( 0g ` ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) ) |
| 11 | fvexd | |- ( I e. V -> ( Base ` ( RRfld freeLMod I ) ) e. _V ) |
|
| 12 | 11 | mptexd | |- ( I e. V -> ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) e. _V ) |
| 13 | eqid | |- ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) = ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) |
|
| 14 | eqid | |- ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( RRfld freeLMod I ) ) |
|
| 15 | 13 14 | tng0 | |- ( ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) e. _V -> ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) ) |
| 16 | 12 15 | syl | |- ( I e. V -> ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) ) |
| 17 | refld | |- RRfld e. Field |
|
| 18 | isfld | |- ( RRfld e. Field <-> ( RRfld e. DivRing /\ RRfld e. CRing ) ) |
|
| 19 | drngring | |- ( RRfld e. DivRing -> RRfld e. Ring ) |
|
| 20 | 19 | adantr | |- ( ( RRfld e. DivRing /\ RRfld e. CRing ) -> RRfld e. Ring ) |
| 21 | 18 20 | sylbi | |- ( RRfld e. Field -> RRfld e. Ring ) |
| 22 | 17 21 | ax-mp | |- RRfld e. Ring |
| 23 | eqid | |- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
|
| 24 | re0g | |- 0 = ( 0g ` RRfld ) |
|
| 25 | 23 24 | frlm0 | |- ( ( RRfld e. Ring /\ I e. V ) -> ( I X. { 0 } ) = ( 0g ` ( RRfld freeLMod I ) ) ) |
| 26 | 22 25 | mpan | |- ( I e. V -> ( I X. { 0 } ) = ( 0g ` ( RRfld freeLMod I ) ) ) |
| 27 | 2 26 | eqtr2id | |- ( I e. V -> ( 0g ` ( RRfld freeLMod I ) ) = .0. ) |
| 28 | 10 16 27 | 3eqtr2d | |- ( I e. V -> ( 0g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = .0. ) |
| 29 | 4 28 | eqtrd | |- ( I e. V -> ( 0g ` H ) = .0. ) |