This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrx0el.0 | |- .0. = ( I X. { 0 } ) |
|
| rrx0el.p | |- P = ( RR ^m I ) |
||
| Assertion | rrx0el | |- ( I e. V -> .0. e. P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrx0el.0 | |- .0. = ( I X. { 0 } ) |
|
| 2 | rrx0el.p | |- P = ( RR ^m I ) |
|
| 3 | c0ex | |- 0 e. _V |
|
| 4 | 3 | fconst | |- ( I X. { 0 } ) : I --> { 0 } |
| 5 | 4 | a1i | |- ( I e. V -> ( I X. { 0 } ) : I --> { 0 } ) |
| 6 | 0re | |- 0 e. RR |
|
| 7 | snssg | |- ( 0 e. RR -> ( 0 e. RR <-> { 0 } C_ RR ) ) |
|
| 8 | 6 7 | ax-mp | |- ( 0 e. RR <-> { 0 } C_ RR ) |
| 9 | 6 8 | mpbi | |- { 0 } C_ RR |
| 10 | 9 | a1i | |- ( I e. V -> { 0 } C_ RR ) |
| 11 | 5 10 | fssd | |- ( I e. V -> ( I X. { 0 } ) : I --> RR ) |
| 12 | reex | |- RR e. _V |
|
| 13 | 12 | a1i | |- ( I e. V -> RR e. _V ) |
| 14 | id | |- ( I e. V -> I e. V ) |
|
| 15 | 13 14 | elmapd | |- ( I e. V -> ( ( I X. { 0 } ) e. ( RR ^m I ) <-> ( I X. { 0 } ) : I --> RR ) ) |
| 16 | 11 15 | mpbird | |- ( I e. V -> ( I X. { 0 } ) e. ( RR ^m I ) ) |
| 17 | 16 1 2 | 3eltr4g | |- ( I e. V -> .0. e. P ) |