This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxsca.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| rrx0.0 | ⊢ 0 = ( 𝐼 × { 0 } ) | ||
| Assertion | rrx0 | ⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ 𝐻 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxsca.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| 2 | rrx0.0 | ⊢ 0 = ( 𝐼 × { 0 } ) | |
| 3 | 1 | rrxval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ 𝐻 ) = ( 0g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 5 | eqid | ⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 7 | eqid | ⊢ ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 8 | 5 6 7 | tcphval | ⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) |
| 9 | 8 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 0g ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) ) |
| 11 | fvexd | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ∈ V ) | |
| 12 | 11 | mptexd | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ∈ V ) |
| 13 | eqid | ⊢ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) = ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) | |
| 14 | eqid | ⊢ ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 15 | 13 14 | tng0 | ⊢ ( ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ∈ V → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) ) |
| 16 | 12 15 | syl | ⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( 0g ‘ ( ( ℝfld freeLMod 𝐼 ) toNrmGrp ( 𝑥 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑥 ) ) ) ) ) ) |
| 17 | refld | ⊢ ℝfld ∈ Field | |
| 18 | isfld | ⊢ ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) ) | |
| 19 | drngring | ⊢ ( ℝfld ∈ DivRing → ℝfld ∈ Ring ) | |
| 20 | 19 | adantr | ⊢ ( ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) → ℝfld ∈ Ring ) |
| 21 | 18 20 | sylbi | ⊢ ( ℝfld ∈ Field → ℝfld ∈ Ring ) |
| 22 | 17 21 | ax-mp | ⊢ ℝfld ∈ Ring |
| 23 | eqid | ⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) | |
| 24 | re0g | ⊢ 0 = ( 0g ‘ ℝfld ) | |
| 25 | 23 24 | frlm0 | ⊢ ( ( ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 26 | 22 25 | mpan | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) = ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 27 | 2 26 | eqtr2id | ⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ ( ℝfld freeLMod 𝐼 ) ) = 0 ) |
| 28 | 10 16 27 | 3eqtr2d | ⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = 0 ) |
| 29 | 4 28 | eqtrd | ⊢ ( 𝐼 ∈ 𝑉 → ( 0g ‘ 𝐻 ) = 0 ) |