This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifle | |- ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) -> if ( ph , A , B ) <_ if ( ps , A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll1 | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ ph ) -> A e. RR ) |
|
| 2 | 1 | leidd | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ ph ) -> A <_ A ) |
| 3 | iftrue | |- ( ph -> if ( ph , A , B ) = A ) |
|
| 4 | 3 | adantl | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ ph ) -> if ( ph , A , B ) = A ) |
| 5 | id | |- ( ( ph -> ps ) -> ( ph -> ps ) ) |
|
| 6 | 5 | imp | |- ( ( ( ph -> ps ) /\ ph ) -> ps ) |
| 7 | 6 | adantll | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ ph ) -> ps ) |
| 8 | 7 | iftrued | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ ph ) -> if ( ps , A , B ) = A ) |
| 9 | 2 4 8 | 3brtr4d | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ ph ) -> if ( ph , A , B ) <_ if ( ps , A , B ) ) |
| 10 | iffalse | |- ( -. ph -> if ( ph , A , B ) = B ) |
|
| 11 | 10 | adantl | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ -. ph ) -> if ( ph , A , B ) = B ) |
| 12 | simpll3 | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ -. ph ) -> B <_ A ) |
|
| 13 | simpll2 | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ -. ph ) -> B e. RR ) |
|
| 14 | 13 | leidd | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ -. ph ) -> B <_ B ) |
| 15 | breq2 | |- ( A = if ( ps , A , B ) -> ( B <_ A <-> B <_ if ( ps , A , B ) ) ) |
|
| 16 | breq2 | |- ( B = if ( ps , A , B ) -> ( B <_ B <-> B <_ if ( ps , A , B ) ) ) |
|
| 17 | 15 16 | ifboth | |- ( ( B <_ A /\ B <_ B ) -> B <_ if ( ps , A , B ) ) |
| 18 | 12 14 17 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ -. ph ) -> B <_ if ( ps , A , B ) ) |
| 19 | 11 18 | eqbrtrd | |- ( ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) /\ -. ph ) -> if ( ph , A , B ) <_ if ( ps , A , B ) ) |
| 20 | 9 19 | pm2.61dan | |- ( ( ( A e. RR /\ B e. RR /\ B <_ A ) /\ ( ph -> ps ) ) -> if ( ph , A , B ) <_ if ( ps , A , B ) ) |