This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K and M are relatively prime, then the GCD of K and M x. N is the GCD of K and N . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpmulgcd | |- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( K gcd ( M x. N ) ) = ( K gcd N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdmultiple | |- ( ( K e. NN /\ N e. NN ) -> ( K gcd ( K x. N ) ) = K ) |
|
| 2 | 1 | 3adant2 | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( K gcd ( K x. N ) ) = K ) |
| 3 | 2 | oveq1d | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( ( K gcd ( K x. N ) ) gcd ( M x. N ) ) = ( K gcd ( M x. N ) ) ) |
| 4 | nnz | |- ( K e. NN -> K e. ZZ ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> K e. ZZ ) |
| 6 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 7 | zmulcl | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K x. N ) e. ZZ ) |
|
| 8 | 4 6 7 | syl2an | |- ( ( K e. NN /\ N e. NN ) -> ( K x. N ) e. ZZ ) |
| 9 | 8 | 3adant2 | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( K x. N ) e. ZZ ) |
| 10 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 11 | zmulcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
|
| 12 | 10 6 11 | syl2an | |- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. ZZ ) |
| 13 | 12 | 3adant1 | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( M x. N ) e. ZZ ) |
| 14 | gcdass | |- ( ( K e. ZZ /\ ( K x. N ) e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( K gcd ( K x. N ) ) gcd ( M x. N ) ) = ( K gcd ( ( K x. N ) gcd ( M x. N ) ) ) ) |
|
| 15 | 5 9 13 14 | syl3anc | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( ( K gcd ( K x. N ) ) gcd ( M x. N ) ) = ( K gcd ( ( K x. N ) gcd ( M x. N ) ) ) ) |
| 16 | 3 15 | eqtr3d | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( K gcd ( M x. N ) ) = ( K gcd ( ( K x. N ) gcd ( M x. N ) ) ) ) |
| 17 | 16 | adantr | |- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( K gcd ( M x. N ) ) = ( K gcd ( ( K x. N ) gcd ( M x. N ) ) ) ) |
| 18 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 19 | mulgcdr | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. NN0 ) -> ( ( K x. N ) gcd ( M x. N ) ) = ( ( K gcd M ) x. N ) ) |
|
| 20 | 4 10 18 19 | syl3an | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> ( ( K x. N ) gcd ( M x. N ) ) = ( ( K gcd M ) x. N ) ) |
| 21 | oveq1 | |- ( ( K gcd M ) = 1 -> ( ( K gcd M ) x. N ) = ( 1 x. N ) ) |
|
| 22 | 20 21 | sylan9eq | |- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( ( K x. N ) gcd ( M x. N ) ) = ( 1 x. N ) ) |
| 23 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 24 | 23 | 3ad2ant3 | |- ( ( K e. NN /\ M e. NN /\ N e. NN ) -> N e. CC ) |
| 25 | 24 | adantr | |- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> N e. CC ) |
| 26 | 25 | mullidd | |- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( 1 x. N ) = N ) |
| 27 | 22 26 | eqtrd | |- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( ( K x. N ) gcd ( M x. N ) ) = N ) |
| 28 | 27 | oveq2d | |- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( K gcd ( ( K x. N ) gcd ( M x. N ) ) ) = ( K gcd N ) ) |
| 29 | 17 28 | eqtrd | |- ( ( ( K e. NN /\ M e. NN /\ N e. NN ) /\ ( K gcd M ) = 1 ) -> ( K gcd ( M x. N ) ) = ( K gcd N ) ) |