This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A and B are relatively prime, then so are A ^ N and B . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rplpwr | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd B ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( k = 1 -> ( A ^ k ) = ( A ^ 1 ) ) |
|
| 2 | 1 | oveq1d | |- ( k = 1 -> ( ( A ^ k ) gcd B ) = ( ( A ^ 1 ) gcd B ) ) |
| 3 | 2 | eqeq1d | |- ( k = 1 -> ( ( ( A ^ k ) gcd B ) = 1 <-> ( ( A ^ 1 ) gcd B ) = 1 ) ) |
| 4 | 3 | imbi2d | |- ( k = 1 -> ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ k ) gcd B ) = 1 ) <-> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ 1 ) gcd B ) = 1 ) ) ) |
| 5 | oveq2 | |- ( k = n -> ( A ^ k ) = ( A ^ n ) ) |
|
| 6 | 5 | oveq1d | |- ( k = n -> ( ( A ^ k ) gcd B ) = ( ( A ^ n ) gcd B ) ) |
| 7 | 6 | eqeq1d | |- ( k = n -> ( ( ( A ^ k ) gcd B ) = 1 <-> ( ( A ^ n ) gcd B ) = 1 ) ) |
| 8 | 7 | imbi2d | |- ( k = n -> ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ k ) gcd B ) = 1 ) <-> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ n ) gcd B ) = 1 ) ) ) |
| 9 | oveq2 | |- ( k = ( n + 1 ) -> ( A ^ k ) = ( A ^ ( n + 1 ) ) ) |
|
| 10 | 9 | oveq1d | |- ( k = ( n + 1 ) -> ( ( A ^ k ) gcd B ) = ( ( A ^ ( n + 1 ) ) gcd B ) ) |
| 11 | 10 | eqeq1d | |- ( k = ( n + 1 ) -> ( ( ( A ^ k ) gcd B ) = 1 <-> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) |
| 12 | 11 | imbi2d | |- ( k = ( n + 1 ) -> ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ k ) gcd B ) = 1 ) <-> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) ) |
| 13 | oveq2 | |- ( k = N -> ( A ^ k ) = ( A ^ N ) ) |
|
| 14 | 13 | oveq1d | |- ( k = N -> ( ( A ^ k ) gcd B ) = ( ( A ^ N ) gcd B ) ) |
| 15 | 14 | eqeq1d | |- ( k = N -> ( ( ( A ^ k ) gcd B ) = 1 <-> ( ( A ^ N ) gcd B ) = 1 ) ) |
| 16 | 15 | imbi2d | |- ( k = N -> ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ k ) gcd B ) = 1 ) <-> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd B ) = 1 ) ) ) |
| 17 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 18 | 17 | exp1d | |- ( A e. NN -> ( A ^ 1 ) = A ) |
| 19 | 18 | oveq1d | |- ( A e. NN -> ( ( A ^ 1 ) gcd B ) = ( A gcd B ) ) |
| 20 | 19 | adantr | |- ( ( A e. NN /\ B e. NN ) -> ( ( A ^ 1 ) gcd B ) = ( A gcd B ) ) |
| 21 | 20 | eqeq1d | |- ( ( A e. NN /\ B e. NN ) -> ( ( ( A ^ 1 ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |
| 22 | 21 | biimpar | |- ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ 1 ) gcd B ) = 1 ) |
| 23 | df-3an | |- ( ( A e. NN /\ B e. NN /\ n e. NN ) <-> ( ( A e. NN /\ B e. NN ) /\ n e. NN ) ) |
|
| 24 | simpl1 | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> A e. NN ) |
|
| 25 | 24 | nncnd | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> A e. CC ) |
| 26 | simpl3 | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> n e. NN ) |
|
| 27 | 26 | nnnn0d | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> n e. NN0 ) |
| 28 | 25 27 | expp1d | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ ( n + 1 ) ) = ( ( A ^ n ) x. A ) ) |
| 29 | simp1 | |- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> A e. NN ) |
|
| 30 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 31 | 30 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> n e. NN0 ) |
| 32 | 29 31 | nnexpcld | |- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> ( A ^ n ) e. NN ) |
| 33 | 32 | nnzd | |- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> ( A ^ n ) e. ZZ ) |
| 34 | 33 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ n ) e. ZZ ) |
| 35 | 34 | zcnd | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ n ) e. CC ) |
| 36 | 35 25 | mulcomd | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ n ) x. A ) = ( A x. ( A ^ n ) ) ) |
| 37 | 28 36 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ ( n + 1 ) ) = ( A x. ( A ^ n ) ) ) |
| 38 | 37 | oveq2d | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( B gcd ( A ^ ( n + 1 ) ) ) = ( B gcd ( A x. ( A ^ n ) ) ) ) |
| 39 | simpl2 | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> B e. NN ) |
|
| 40 | 32 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ n ) e. NN ) |
| 41 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 42 | 41 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> A e. ZZ ) |
| 43 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 44 | 43 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> B e. ZZ ) |
| 45 | 42 44 | gcdcomd | |- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> ( A gcd B ) = ( B gcd A ) ) |
| 46 | 45 | eqeq1d | |- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> ( ( A gcd B ) = 1 <-> ( B gcd A ) = 1 ) ) |
| 47 | 46 | biimpa | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( B gcd A ) = 1 ) |
| 48 | rpmulgcd | |- ( ( ( B e. NN /\ A e. NN /\ ( A ^ n ) e. NN ) /\ ( B gcd A ) = 1 ) -> ( B gcd ( A x. ( A ^ n ) ) ) = ( B gcd ( A ^ n ) ) ) |
|
| 49 | 39 24 40 47 48 | syl31anc | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( B gcd ( A x. ( A ^ n ) ) ) = ( B gcd ( A ^ n ) ) ) |
| 50 | 38 49 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( B gcd ( A ^ ( n + 1 ) ) ) = ( B gcd ( A ^ n ) ) ) |
| 51 | peano2nn | |- ( n e. NN -> ( n + 1 ) e. NN ) |
|
| 52 | 51 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ n e. NN ) -> ( n + 1 ) e. NN ) |
| 53 | 52 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( n + 1 ) e. NN ) |
| 54 | 53 | nnnn0d | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( n + 1 ) e. NN0 ) |
| 55 | 24 54 | nnexpcld | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ ( n + 1 ) ) e. NN ) |
| 56 | 55 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( A ^ ( n + 1 ) ) e. ZZ ) |
| 57 | 44 | adantr | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> B e. ZZ ) |
| 58 | 56 57 | gcdcomd | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ ( n + 1 ) ) gcd B ) = ( B gcd ( A ^ ( n + 1 ) ) ) ) |
| 59 | 34 57 | gcdcomd | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ n ) gcd B ) = ( B gcd ( A ^ n ) ) ) |
| 60 | 50 58 59 | 3eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ ( n + 1 ) ) gcd B ) = ( ( A ^ n ) gcd B ) ) |
| 61 | 60 | eqeq1d | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( ( A ^ ( n + 1 ) ) gcd B ) = 1 <-> ( ( A ^ n ) gcd B ) = 1 ) ) |
| 62 | 61 | biimprd | |- ( ( ( A e. NN /\ B e. NN /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( ( A ^ n ) gcd B ) = 1 -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) |
| 63 | 23 62 | sylanbr | |- ( ( ( ( A e. NN /\ B e. NN ) /\ n e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( ( A ^ n ) gcd B ) = 1 -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) |
| 64 | 63 | an32s | |- ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) /\ n e. NN ) -> ( ( ( A ^ n ) gcd B ) = 1 -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) |
| 65 | 64 | expcom | |- ( n e. NN -> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( ( A ^ n ) gcd B ) = 1 -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) ) |
| 66 | 65 | a2d | |- ( n e. NN -> ( ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ n ) gcd B ) = 1 ) -> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ ( n + 1 ) ) gcd B ) = 1 ) ) ) |
| 67 | 4 8 12 16 22 66 | nnind | |- ( N e. NN -> ( ( ( A e. NN /\ B e. NN ) /\ ( A gcd B ) = 1 ) -> ( ( A ^ N ) gcd B ) = 1 ) ) |
| 68 | 67 | expd | |- ( N e. NN -> ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd B ) = 1 ) ) ) |
| 69 | 68 | com12 | |- ( ( A e. NN /\ B e. NN ) -> ( N e. NN -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd B ) = 1 ) ) ) |
| 70 | 69 | 3impia | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd B ) = 1 ) ) |