This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the transitive closure of a class. This is the smallest relation containing R (or more precisely, the relation ` ( R |`_V ) induced by R ) and having the transitive property. Definition from Levy p. 59, who denotes it as R * and calls it the "ancestral" of R . (Contributed by Scott Fenton, 17-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ttrcl | |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | 0 | cttrcl | |- t++ R |
| 2 | vx | |- x |
|
| 3 | vy | |- y |
|
| 4 | vn | |- n |
|
| 5 | com | |- _om |
|
| 6 | c1o | |- 1o |
|
| 7 | 5 6 | cdif | |- ( _om \ 1o ) |
| 8 | vf | |- f |
|
| 9 | 8 | cv | |- f |
| 10 | 4 | cv | |- n |
| 11 | 10 | csuc | |- suc n |
| 12 | 9 11 | wfn | |- f Fn suc n |
| 13 | c0 | |- (/) |
|
| 14 | 13 9 | cfv | |- ( f ` (/) ) |
| 15 | 2 | cv | |- x |
| 16 | 14 15 | wceq | |- ( f ` (/) ) = x |
| 17 | 10 9 | cfv | |- ( f ` n ) |
| 18 | 3 | cv | |- y |
| 19 | 17 18 | wceq | |- ( f ` n ) = y |
| 20 | 16 19 | wa | |- ( ( f ` (/) ) = x /\ ( f ` n ) = y ) |
| 21 | vm | |- m |
|
| 22 | 21 | cv | |- m |
| 23 | 22 9 | cfv | |- ( f ` m ) |
| 24 | 22 | csuc | |- suc m |
| 25 | 24 9 | cfv | |- ( f ` suc m ) |
| 26 | 23 25 0 | wbr | |- ( f ` m ) R ( f ` suc m ) |
| 27 | 26 21 10 | wral | |- A. m e. n ( f ` m ) R ( f ` suc m ) |
| 28 | 12 20 27 | w3a | |- ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) |
| 29 | 28 8 | wex | |- E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) |
| 30 | 29 4 7 | wrex | |- E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) |
| 31 | 30 2 3 | copab | |- { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } |
| 32 | 1 31 | wceq | |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } |