This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure of R restricted to _V is the same as the transitive closure of R itself. (Contributed by Scott Fenton, 20-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttrclresv | |- t++ ( R |` _V ) = t++ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( f ` a ) e. _V |
|
| 2 | fvex | |- ( f ` suc a ) e. _V |
|
| 3 | 2 | brresi | |- ( ( f ` a ) ( R |` _V ) ( f ` suc a ) <-> ( ( f ` a ) e. _V /\ ( f ` a ) R ( f ` suc a ) ) ) |
| 4 | 1 3 | mpbiran | |- ( ( f ` a ) ( R |` _V ) ( f ` suc a ) <-> ( f ` a ) R ( f ` suc a ) ) |
| 5 | 4 | ralbii | |- ( A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) <-> A. a e. n ( f ` a ) R ( f ` suc a ) ) |
| 6 | 5 | 3anbi3i | |- ( ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) ) <-> ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
| 7 | 6 | exbii | |- ( E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) ) <-> E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
| 8 | 7 | rexbii | |- ( E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) ) <-> E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
| 9 | 8 | opabbii | |- { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) ) } = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
| 10 | df-ttrcl | |- t++ ( R |` _V ) = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) ( R |` _V ) ( f ` suc a ) ) } |
|
| 11 | df-ttrcl | |- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
|
| 12 | 9 10 11 | 3eqtr4i | |- t++ ( R |` _V ) = t++ R |