This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If R is a set, then so is t++ R . (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttrclexg | |- ( R e. V -> t++ R e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | |- ( R e. V -> dom R e. _V ) |
|
| 2 | rnexg | |- ( R e. V -> ran R e. _V ) |
|
| 3 | 1 2 | xpexd | |- ( R e. V -> ( dom R X. ran R ) e. _V ) |
| 4 | relttrcl | |- Rel t++ R |
|
| 5 | relssdmrn | |- ( Rel t++ R -> t++ R C_ ( dom t++ R X. ran t++ R ) ) |
|
| 6 | 4 5 | ax-mp | |- t++ R C_ ( dom t++ R X. ran t++ R ) |
| 7 | dmttrcl | |- dom t++ R = dom R |
|
| 8 | rnttrcl | |- ran t++ R = ran R |
|
| 9 | 7 8 | xpeq12i | |- ( dom t++ R X. ran t++ R ) = ( dom R X. ran R ) |
| 10 | 6 9 | sseqtri | |- t++ R C_ ( dom R X. ran R ) |
| 11 | 10 | a1i | |- ( R e. V -> t++ R C_ ( dom R X. ran R ) ) |
| 12 | 3 11 | ssexd | |- ( R e. V -> t++ R e. _V ) |