This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in a ring is the same as right multiplication by -u 1 . (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringneg.1 | |- G = ( 1st ` R ) |
|
| ringneg.2 | |- H = ( 2nd ` R ) |
||
| ringneg.3 | |- X = ran G |
||
| ringneg.4 | |- N = ( inv ` G ) |
||
| ringneg.5 | |- U = ( GId ` H ) |
||
| Assertion | rngonegmn1r | |- ( ( R e. RingOps /\ A e. X ) -> ( N ` A ) = ( A H ( N ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneg.1 | |- G = ( 1st ` R ) |
|
| 2 | ringneg.2 | |- H = ( 2nd ` R ) |
|
| 3 | ringneg.3 | |- X = ran G |
|
| 4 | ringneg.4 | |- N = ( inv ` G ) |
|
| 5 | ringneg.5 | |- U = ( GId ` H ) |
|
| 6 | 1 | rneqi | |- ran G = ran ( 1st ` R ) |
| 7 | 3 6 | eqtri | |- X = ran ( 1st ` R ) |
| 8 | 7 2 5 | rngo1cl | |- ( R e. RingOps -> U e. X ) |
| 9 | 1 3 4 | rngonegcl | |- ( ( R e. RingOps /\ U e. X ) -> ( N ` U ) e. X ) |
| 10 | 8 9 | mpdan | |- ( R e. RingOps -> ( N ` U ) e. X ) |
| 11 | 10 | adantr | |- ( ( R e. RingOps /\ A e. X ) -> ( N ` U ) e. X ) |
| 12 | 8 | adantr | |- ( ( R e. RingOps /\ A e. X ) -> U e. X ) |
| 13 | 11 12 | jca | |- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` U ) e. X /\ U e. X ) ) |
| 14 | 1 2 3 | rngodi | |- ( ( R e. RingOps /\ ( A e. X /\ ( N ` U ) e. X /\ U e. X ) ) -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) |
| 15 | 14 | 3exp2 | |- ( R e. RingOps -> ( A e. X -> ( ( N ` U ) e. X -> ( U e. X -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) ) ) ) |
| 16 | 15 | imp43 | |- ( ( ( R e. RingOps /\ A e. X ) /\ ( ( N ` U ) e. X /\ U e. X ) ) -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) |
| 17 | 13 16 | mpdan | |- ( ( R e. RingOps /\ A e. X ) -> ( A H ( ( N ` U ) G U ) ) = ( ( A H ( N ` U ) ) G ( A H U ) ) ) |
| 18 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 19 | 1 3 4 18 | rngoaddneg2 | |- ( ( R e. RingOps /\ U e. X ) -> ( ( N ` U ) G U ) = ( GId ` G ) ) |
| 20 | 8 19 | mpdan | |- ( R e. RingOps -> ( ( N ` U ) G U ) = ( GId ` G ) ) |
| 21 | 20 | adantr | |- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` U ) G U ) = ( GId ` G ) ) |
| 22 | 21 | oveq2d | |- ( ( R e. RingOps /\ A e. X ) -> ( A H ( ( N ` U ) G U ) ) = ( A H ( GId ` G ) ) ) |
| 23 | 18 3 1 2 | rngorz | |- ( ( R e. RingOps /\ A e. X ) -> ( A H ( GId ` G ) ) = ( GId ` G ) ) |
| 24 | 22 23 | eqtrd | |- ( ( R e. RingOps /\ A e. X ) -> ( A H ( ( N ` U ) G U ) ) = ( GId ` G ) ) |
| 25 | 2 7 5 | rngoridm | |- ( ( R e. RingOps /\ A e. X ) -> ( A H U ) = A ) |
| 26 | 25 | oveq2d | |- ( ( R e. RingOps /\ A e. X ) -> ( ( A H ( N ` U ) ) G ( A H U ) ) = ( ( A H ( N ` U ) ) G A ) ) |
| 27 | 17 24 26 | 3eqtr3rd | |- ( ( R e. RingOps /\ A e. X ) -> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) |
| 28 | 1 2 3 | rngocl | |- ( ( R e. RingOps /\ A e. X /\ ( N ` U ) e. X ) -> ( A H ( N ` U ) ) e. X ) |
| 29 | 11 28 | mpd3an3 | |- ( ( R e. RingOps /\ A e. X ) -> ( A H ( N ` U ) ) e. X ) |
| 30 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
| 31 | 3 18 4 | grpoinvid2 | |- ( ( G e. GrpOp /\ A e. X /\ ( A H ( N ` U ) ) e. X ) -> ( ( N ` A ) = ( A H ( N ` U ) ) <-> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) ) |
| 32 | 30 31 | syl3an1 | |- ( ( R e. RingOps /\ A e. X /\ ( A H ( N ` U ) ) e. X ) -> ( ( N ` A ) = ( A H ( N ` U ) ) <-> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) ) |
| 33 | 29 32 | mpd3an3 | |- ( ( R e. RingOps /\ A e. X ) -> ( ( N ` A ) = ( A H ( N ` U ) ) <-> ( ( A H ( N ` U ) ) G A ) = ( GId ` G ) ) ) |
| 34 | 27 33 | mpbird | |- ( ( R e. RingOps /\ A e. X ) -> ( N ` A ) = ( A H ( N ` U ) ) ) |