This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringlz.1 | |- Z = ( GId ` G ) |
|
| ringlz.2 | |- X = ran G |
||
| ringlz.3 | |- G = ( 1st ` R ) |
||
| ringlz.4 | |- H = ( 2nd ` R ) |
||
| Assertion | rngolz | |- ( ( R e. RingOps /\ A e. X ) -> ( Z H A ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlz.1 | |- Z = ( GId ` G ) |
|
| 2 | ringlz.2 | |- X = ran G |
|
| 3 | ringlz.3 | |- G = ( 1st ` R ) |
|
| 4 | ringlz.4 | |- H = ( 2nd ` R ) |
|
| 5 | 3 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
| 6 | 2 1 | grpoidcl | |- ( G e. GrpOp -> Z e. X ) |
| 7 | 2 1 | grpolid | |- ( ( G e. GrpOp /\ Z e. X ) -> ( Z G Z ) = Z ) |
| 8 | 5 6 7 | syl2anc2 | |- ( R e. RingOps -> ( Z G Z ) = Z ) |
| 9 | 8 | adantr | |- ( ( R e. RingOps /\ A e. X ) -> ( Z G Z ) = Z ) |
| 10 | 9 | oveq1d | |- ( ( R e. RingOps /\ A e. X ) -> ( ( Z G Z ) H A ) = ( Z H A ) ) |
| 11 | 3 2 1 | rngo0cl | |- ( R e. RingOps -> Z e. X ) |
| 12 | 11 | adantr | |- ( ( R e. RingOps /\ A e. X ) -> Z e. X ) |
| 13 | simpr | |- ( ( R e. RingOps /\ A e. X ) -> A e. X ) |
|
| 14 | 12 12 13 | 3jca | |- ( ( R e. RingOps /\ A e. X ) -> ( Z e. X /\ Z e. X /\ A e. X ) ) |
| 15 | 3 4 2 | rngodir | |- ( ( R e. RingOps /\ ( Z e. X /\ Z e. X /\ A e. X ) ) -> ( ( Z G Z ) H A ) = ( ( Z H A ) G ( Z H A ) ) ) |
| 16 | 14 15 | syldan | |- ( ( R e. RingOps /\ A e. X ) -> ( ( Z G Z ) H A ) = ( ( Z H A ) G ( Z H A ) ) ) |
| 17 | 5 | adantr | |- ( ( R e. RingOps /\ A e. X ) -> G e. GrpOp ) |
| 18 | simpl | |- ( ( R e. RingOps /\ A e. X ) -> R e. RingOps ) |
|
| 19 | 3 4 2 | rngocl | |- ( ( R e. RingOps /\ Z e. X /\ A e. X ) -> ( Z H A ) e. X ) |
| 20 | 18 12 13 19 | syl3anc | |- ( ( R e. RingOps /\ A e. X ) -> ( Z H A ) e. X ) |
| 21 | 2 1 | grporid | |- ( ( G e. GrpOp /\ ( Z H A ) e. X ) -> ( ( Z H A ) G Z ) = ( Z H A ) ) |
| 22 | 21 | eqcomd | |- ( ( G e. GrpOp /\ ( Z H A ) e. X ) -> ( Z H A ) = ( ( Z H A ) G Z ) ) |
| 23 | 17 20 22 | syl2anc | |- ( ( R e. RingOps /\ A e. X ) -> ( Z H A ) = ( ( Z H A ) G Z ) ) |
| 24 | 10 16 23 | 3eqtr3d | |- ( ( R e. RingOps /\ A e. X ) -> ( ( Z H A ) G ( Z H A ) ) = ( ( Z H A ) G Z ) ) |
| 25 | 2 | grpolcan | |- ( ( G e. GrpOp /\ ( ( Z H A ) e. X /\ Z e. X /\ ( Z H A ) e. X ) ) -> ( ( ( Z H A ) G ( Z H A ) ) = ( ( Z H A ) G Z ) <-> ( Z H A ) = Z ) ) |
| 26 | 17 20 12 20 25 | syl13anc | |- ( ( R e. RingOps /\ A e. X ) -> ( ( ( Z H A ) G ( Z H A ) ) = ( ( Z H A ) G Z ) <-> ( Z H A ) = Z ) ) |
| 27 | 24 26 | mpbid | |- ( ( R e. RingOps /\ A e. X ) -> ( Z H A ) = Z ) |