This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in a ring is the same as left multiplication by -u 1 . (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringneg.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| ringneg.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| ringneg.3 | ⊢ 𝑋 = ran 𝐺 | ||
| ringneg.4 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| ringneg.5 | ⊢ 𝑈 = ( GId ‘ 𝐻 ) | ||
| Assertion | rngonegmn1l | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneg.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | ringneg.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | ringneg.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | ringneg.4 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 5 | ringneg.5 | ⊢ 𝑈 = ( GId ‘ 𝐻 ) | |
| 6 | 1 | rneqi | ⊢ ran 𝐺 = ran ( 1st ‘ 𝑅 ) |
| 7 | 3 6 | eqtri | ⊢ 𝑋 = ran ( 1st ‘ 𝑅 ) |
| 8 | 7 2 5 | rngo1cl | ⊢ ( 𝑅 ∈ RingOps → 𝑈 ∈ 𝑋 ) |
| 9 | 1 3 4 | rngonegcl | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) |
| 10 | 8 9 | mpdan | ⊢ ( 𝑅 ∈ RingOps → ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) |
| 11 | 8 10 | jca | ⊢ ( 𝑅 ∈ RingOps → ( 𝑈 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) ) |
| 12 | 1 2 3 | rngodir | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑈 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑈 𝐺 ( 𝑁 ‘ 𝑈 ) ) 𝐻 𝐴 ) = ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) ) |
| 13 | 12 | 3exp2 | ⊢ ( 𝑅 ∈ RingOps → ( 𝑈 ∈ 𝑋 → ( ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( 𝑈 𝐺 ( 𝑁 ‘ 𝑈 ) ) 𝐻 𝐴 ) = ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) ) ) ) ) |
| 14 | 13 | imp42 | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑈 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑈 𝐺 ( 𝑁 ‘ 𝑈 ) ) 𝐻 𝐴 ) = ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) ) |
| 15 | 14 | an32s | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑈 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) ) → ( ( 𝑈 𝐺 ( 𝑁 ‘ 𝑈 ) ) 𝐻 𝐴 ) = ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) ) |
| 16 | 11 15 | mpidan | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑈 𝐺 ( 𝑁 ‘ 𝑈 ) ) 𝐻 𝐴 ) = ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) ) |
| 17 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 18 | 1 3 4 17 | rngoaddneg1 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ∈ 𝑋 ) → ( 𝑈 𝐺 ( 𝑁 ‘ 𝑈 ) ) = ( GId ‘ 𝐺 ) ) |
| 19 | 8 18 | mpdan | ⊢ ( 𝑅 ∈ RingOps → ( 𝑈 𝐺 ( 𝑁 ‘ 𝑈 ) ) = ( GId ‘ 𝐺 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑈 𝐺 ( 𝑁 ‘ 𝑈 ) ) = ( GId ‘ 𝐺 ) ) |
| 21 | 20 | oveq1d | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑈 𝐺 ( 𝑁 ‘ 𝑈 ) ) 𝐻 𝐴 ) = ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) ) |
| 22 | 17 3 1 2 | rngolz | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 23 | 21 22 | eqtrd | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑈 𝐺 ( 𝑁 ‘ 𝑈 ) ) 𝐻 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 24 | 2 7 5 | rngolidm | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑈 𝐻 𝐴 ) = 𝐴 ) |
| 25 | 24 | oveq1d | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑈 𝐻 𝐴 ) 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) = ( 𝐴 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) ) |
| 26 | 16 23 25 | 3eqtr3rd | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 27 | 1 2 3 | rngocl | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 ) |
| 28 | 27 | 3expa | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 ) |
| 29 | 28 | an32s | ⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑁 ‘ 𝑈 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 ) |
| 30 | 10 29 | mpidan | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 ) |
| 31 | 1 | rngogrpo | ⊢ ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp ) |
| 32 | 3 17 4 | grpoinvid1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ↔ ( 𝐴 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) = ( GId ‘ 𝐺 ) ) ) |
| 33 | 31 32 | syl3an1 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ↔ ( 𝐴 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) = ( GId ‘ 𝐺 ) ) ) |
| 34 | 30 33 | mpd3an3 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ↔ ( 𝐴 𝐺 ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) = ( GId ‘ 𝐺 ) ) ) |
| 35 | 26 34 | mpbird | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( ( 𝑁 ‘ 𝑈 ) 𝐻 𝐴 ) ) |