This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringi.1 | |- G = ( 1st ` R ) |
|
| ringi.2 | |- H = ( 2nd ` R ) |
||
| ringi.3 | |- X = ran G |
||
| Assertion | rngodir | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) H C ) = ( ( A H C ) G ( B H C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | |- G = ( 1st ` R ) |
|
| 2 | ringi.2 | |- H = ( 2nd ` R ) |
|
| 3 | ringi.3 | |- X = ran G |
|
| 4 | 1 2 3 | rngoi | |- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
| 5 | 4 | simprd | |- ( R e. RingOps -> ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) |
| 6 | 5 | simpld | |- ( R e. RingOps -> A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) ) |
| 7 | simp3 | |- ( ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) |
|
| 8 | 7 | ralimi | |- ( A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) -> A. z e. X ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) |
| 9 | 8 | 2ralimi | |- ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) -> A. x e. X A. y e. X A. z e. X ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) |
| 10 | oveq1 | |- ( x = A -> ( x G y ) = ( A G y ) ) |
|
| 11 | 10 | oveq1d | |- ( x = A -> ( ( x G y ) H z ) = ( ( A G y ) H z ) ) |
| 12 | oveq1 | |- ( x = A -> ( x H z ) = ( A H z ) ) |
|
| 13 | 12 | oveq1d | |- ( x = A -> ( ( x H z ) G ( y H z ) ) = ( ( A H z ) G ( y H z ) ) ) |
| 14 | 11 13 | eqeq12d | |- ( x = A -> ( ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) <-> ( ( A G y ) H z ) = ( ( A H z ) G ( y H z ) ) ) ) |
| 15 | oveq2 | |- ( y = B -> ( A G y ) = ( A G B ) ) |
|
| 16 | 15 | oveq1d | |- ( y = B -> ( ( A G y ) H z ) = ( ( A G B ) H z ) ) |
| 17 | oveq1 | |- ( y = B -> ( y H z ) = ( B H z ) ) |
|
| 18 | 17 | oveq2d | |- ( y = B -> ( ( A H z ) G ( y H z ) ) = ( ( A H z ) G ( B H z ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( y = B -> ( ( ( A G y ) H z ) = ( ( A H z ) G ( y H z ) ) <-> ( ( A G B ) H z ) = ( ( A H z ) G ( B H z ) ) ) ) |
| 20 | oveq2 | |- ( z = C -> ( ( A G B ) H z ) = ( ( A G B ) H C ) ) |
|
| 21 | oveq2 | |- ( z = C -> ( A H z ) = ( A H C ) ) |
|
| 22 | oveq2 | |- ( z = C -> ( B H z ) = ( B H C ) ) |
|
| 23 | 21 22 | oveq12d | |- ( z = C -> ( ( A H z ) G ( B H z ) ) = ( ( A H C ) G ( B H C ) ) ) |
| 24 | 20 23 | eqeq12d | |- ( z = C -> ( ( ( A G B ) H z ) = ( ( A H z ) G ( B H z ) ) <-> ( ( A G B ) H C ) = ( ( A H C ) G ( B H C ) ) ) ) |
| 25 | 14 19 24 | rspc3v | |- ( ( A e. X /\ B e. X /\ C e. X ) -> ( A. x e. X A. y e. X A. z e. X ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) -> ( ( A G B ) H C ) = ( ( A H C ) G ( B H C ) ) ) ) |
| 26 | 9 25 | syl5 | |- ( ( A e. X /\ B e. X /\ C e. X ) -> ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) -> ( ( A G B ) H C ) = ( ( A H C ) G ( B H C ) ) ) ) |
| 27 | 6 26 | mpan9 | |- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) H C ) = ( ( A H C ) G ( B H C ) ) ) |