This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009) (Revised by AV, 30-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sgrpass.b | |- B = ( Base ` G ) |
|
| sgrpass.o | |- .o. = ( +g ` G ) |
||
| Assertion | sgrpass | |- ( ( G e. Smgrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .o. Y ) .o. Z ) = ( X .o. ( Y .o. Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgrpass.b | |- B = ( Base ` G ) |
|
| 2 | sgrpass.o | |- .o. = ( +g ` G ) |
|
| 3 | 1 2 | issgrp | |- ( G e. Smgrp <-> ( G e. Mgm /\ A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) |
| 4 | oveq1 | |- ( x = X -> ( x .o. y ) = ( X .o. y ) ) |
|
| 5 | 4 | oveq1d | |- ( x = X -> ( ( x .o. y ) .o. z ) = ( ( X .o. y ) .o. z ) ) |
| 6 | oveq1 | |- ( x = X -> ( x .o. ( y .o. z ) ) = ( X .o. ( y .o. z ) ) ) |
|
| 7 | 5 6 | eqeq12d | |- ( x = X -> ( ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) <-> ( ( X .o. y ) .o. z ) = ( X .o. ( y .o. z ) ) ) ) |
| 8 | oveq2 | |- ( y = Y -> ( X .o. y ) = ( X .o. Y ) ) |
|
| 9 | 8 | oveq1d | |- ( y = Y -> ( ( X .o. y ) .o. z ) = ( ( X .o. Y ) .o. z ) ) |
| 10 | oveq1 | |- ( y = Y -> ( y .o. z ) = ( Y .o. z ) ) |
|
| 11 | 10 | oveq2d | |- ( y = Y -> ( X .o. ( y .o. z ) ) = ( X .o. ( Y .o. z ) ) ) |
| 12 | 9 11 | eqeq12d | |- ( y = Y -> ( ( ( X .o. y ) .o. z ) = ( X .o. ( y .o. z ) ) <-> ( ( X .o. Y ) .o. z ) = ( X .o. ( Y .o. z ) ) ) ) |
| 13 | oveq2 | |- ( z = Z -> ( ( X .o. Y ) .o. z ) = ( ( X .o. Y ) .o. Z ) ) |
|
| 14 | oveq2 | |- ( z = Z -> ( Y .o. z ) = ( Y .o. Z ) ) |
|
| 15 | 14 | oveq2d | |- ( z = Z -> ( X .o. ( Y .o. z ) ) = ( X .o. ( Y .o. Z ) ) ) |
| 16 | 13 15 | eqeq12d | |- ( z = Z -> ( ( ( X .o. Y ) .o. z ) = ( X .o. ( Y .o. z ) ) <-> ( ( X .o. Y ) .o. Z ) = ( X .o. ( Y .o. Z ) ) ) ) |
| 17 | 7 12 16 | rspc3v | |- ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) -> ( ( X .o. Y ) .o. Z ) = ( X .o. ( Y .o. Z ) ) ) ) |
| 18 | 17 | com12 | |- ( A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) -> ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( ( X .o. Y ) .o. Z ) = ( X .o. ( Y .o. Z ) ) ) ) |
| 19 | 3 18 | simplbiim | |- ( G e. Smgrp -> ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( ( X .o. Y ) .o. Z ) = ( X .o. ( Y .o. Z ) ) ) ) |
| 20 | 19 | imp | |- ( ( G e. Smgrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .o. Y ) .o. Z ) = ( X .o. ( Y .o. Z ) ) ) |