This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgm.b | |- B = ( Base ` M ) |
|
| ismgm.o | |- .o. = ( +g ` M ) |
||
| Assertion | ismgm | |- ( M e. V -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgm.b | |- B = ( Base ` M ) |
|
| 2 | ismgm.o | |- .o. = ( +g ` M ) |
|
| 3 | fvexd | |- ( m = M -> ( Base ` m ) e. _V ) |
|
| 4 | fveq2 | |- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( m = M -> ( Base ` m ) = B ) |
| 6 | fvexd | |- ( ( m = M /\ b = B ) -> ( +g ` m ) e. _V ) |
|
| 7 | fveq2 | |- ( m = M -> ( +g ` m ) = ( +g ` M ) ) |
|
| 8 | 7 | adantr | |- ( ( m = M /\ b = B ) -> ( +g ` m ) = ( +g ` M ) ) |
| 9 | 8 2 | eqtr4di | |- ( ( m = M /\ b = B ) -> ( +g ` m ) = .o. ) |
| 10 | simplr | |- ( ( ( m = M /\ b = B ) /\ o = .o. ) -> b = B ) |
|
| 11 | oveq | |- ( o = .o. -> ( x o y ) = ( x .o. y ) ) |
|
| 12 | 11 | adantl | |- ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( x o y ) = ( x .o. y ) ) |
| 13 | 12 10 | eleq12d | |- ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( ( x o y ) e. b <-> ( x .o. y ) e. B ) ) |
| 14 | 10 13 | raleqbidv | |- ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( A. y e. b ( x o y ) e. b <-> A. y e. B ( x .o. y ) e. B ) ) |
| 15 | 10 14 | raleqbidv | |- ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( A. x e. b A. y e. b ( x o y ) e. b <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) |
| 16 | 6 9 15 | sbcied2 | |- ( ( m = M /\ b = B ) -> ( [. ( +g ` m ) / o ]. A. x e. b A. y e. b ( x o y ) e. b <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) |
| 17 | 3 5 16 | sbcied2 | |- ( m = M -> ( [. ( Base ` m ) / b ]. [. ( +g ` m ) / o ]. A. x e. b A. y e. b ( x o y ) e. b <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) |
| 18 | df-mgm | |- Mgm = { m | [. ( Base ` m ) / b ]. [. ( +g ` m ) / o ]. A. x e. b A. y e. b ( x o y ) e. b } |
|
| 19 | 17 18 | elab2g | |- ( M e. V -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) |