This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the ring unity of the second ring is the function value of the ring unity of the first ring for the isomorphism. (Contributed by AV, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngisomring1 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( 1r ` S ) = ( F ` ( 1r ` R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 2 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 3 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 4 | 1 2 3 | rngisom1 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) |
| 5 | eqidd | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( Base ` S ) = ( Base ` S ) ) |
|
| 6 | eqidd | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( .r ` S ) = ( .r ` S ) ) |
|
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | 7 2 | rngimf1o | |- ( F e. ( R RngIso S ) -> F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) |
| 9 | f1of | |- ( F : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
|
| 10 | 8 9 | syl | |- ( F e. ( R RngIso S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 11 | 10 | 3ad2ant3 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 12 | 7 1 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 13 | 12 | 3ad2ant1 | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 14 | 11 13 | ffvelcdmd | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( F ` ( 1r ` R ) ) e. ( Base ` S ) ) |
| 15 | 14 | adantr | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( F ` ( 1r ` R ) ) e. ( Base ` S ) ) |
| 16 | oveq2 | |- ( x = y -> ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) ) |
|
| 17 | id | |- ( x = y -> x = y ) |
|
| 18 | 16 17 | eqeq12d | |- ( x = y -> ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x <-> ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y ) ) |
| 19 | oveq1 | |- ( x = y -> ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) ) |
|
| 20 | 19 17 | eqeq12d | |- ( x = y -> ( ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x <-> ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) ) |
| 21 | 18 20 | anbi12d | |- ( x = y -> ( ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) <-> ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) ) ) |
| 22 | 21 | rspccv | |- ( A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) -> ( y e. ( Base ` S ) -> ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) ) ) |
| 23 | 22 | adantl | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( y e. ( Base ` S ) -> ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) ) ) |
| 24 | simpl | |- ( ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) -> ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y ) |
|
| 25 | 23 24 | syl6 | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( y e. ( Base ` S ) -> ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y ) ) |
| 26 | 25 | imp | |- ( ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) /\ y e. ( Base ` S ) ) -> ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y ) |
| 27 | simpr | |- ( ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) -> ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) |
|
| 28 | 23 27 | syl6 | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( y e. ( Base ` S ) -> ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) ) |
| 29 | 28 | imp | |- ( ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) /\ y e. ( Base ` S ) ) -> ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) |
| 30 | 5 6 15 26 29 | ringurd | |- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 31 | 4 30 | mpdan | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 32 | 31 | eqcomd | |- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( 1r ` S ) = ( F ` ( 1r ` R ) ) ) |