This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcsect.c | |- C = ( RngCat ` U ) |
|
| rngcsect.b | |- B = ( Base ` C ) |
||
| rngcsect.u | |- ( ph -> U e. V ) |
||
| rngcsect.x | |- ( ph -> X e. B ) |
||
| rngcsect.y | |- ( ph -> Y e. B ) |
||
| rngcsect.e | |- E = ( Base ` X ) |
||
| rngcsect.n | |- S = ( Sect ` C ) |
||
| Assertion | rngcsect | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( G o. F ) = ( _I |` E ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcsect.c | |- C = ( RngCat ` U ) |
|
| 2 | rngcsect.b | |- B = ( Base ` C ) |
|
| 3 | rngcsect.u | |- ( ph -> U e. V ) |
|
| 4 | rngcsect.x | |- ( ph -> X e. B ) |
|
| 5 | rngcsect.y | |- ( ph -> Y e. B ) |
|
| 6 | rngcsect.e | |- E = ( Base ` X ) |
|
| 7 | rngcsect.n | |- S = ( Sect ` C ) |
|
| 8 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 9 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 10 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 11 | 1 | rngccat | |- ( U e. V -> C e. Cat ) |
| 12 | 3 11 | syl | |- ( ph -> C e. Cat ) |
| 13 | 2 8 9 10 7 12 4 5 | issect | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 14 | 1 2 3 8 4 5 | rngchom | |- ( ph -> ( X ( Hom ` C ) Y ) = ( X RngHom Y ) ) |
| 15 | 14 | eleq2d | |- ( ph -> ( F e. ( X ( Hom ` C ) Y ) <-> F e. ( X RngHom Y ) ) ) |
| 16 | 1 2 3 8 5 4 | rngchom | |- ( ph -> ( Y ( Hom ` C ) X ) = ( Y RngHom X ) ) |
| 17 | 16 | eleq2d | |- ( ph -> ( G e. ( Y ( Hom ` C ) X ) <-> G e. ( Y RngHom X ) ) ) |
| 18 | 15 17 | anbi12d | |- ( ph -> ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) ) |
| 19 | 18 | anbi1d | |- ( ph -> ( ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 20 | 3 | adantr | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> U e. V ) |
| 21 | 4 | adantr | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> X e. B ) |
| 22 | 1 2 3 | rngcbas | |- ( ph -> B = ( U i^i Rng ) ) |
| 23 | 22 | eleq2d | |- ( ph -> ( X e. B <-> X e. ( U i^i Rng ) ) ) |
| 24 | inss1 | |- ( U i^i Rng ) C_ U |
|
| 25 | 24 | a1i | |- ( ph -> ( U i^i Rng ) C_ U ) |
| 26 | 25 | sseld | |- ( ph -> ( X e. ( U i^i Rng ) -> X e. U ) ) |
| 27 | 23 26 | sylbid | |- ( ph -> ( X e. B -> X e. U ) ) |
| 28 | 27 | adantr | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> ( X e. B -> X e. U ) ) |
| 29 | 21 28 | mpd | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> X e. U ) |
| 30 | 5 | adantr | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> Y e. B ) |
| 31 | 22 | eleq2d | |- ( ph -> ( Y e. B <-> Y e. ( U i^i Rng ) ) ) |
| 32 | 25 | sseld | |- ( ph -> ( Y e. ( U i^i Rng ) -> Y e. U ) ) |
| 33 | 31 32 | sylbid | |- ( ph -> ( Y e. B -> Y e. U ) ) |
| 34 | 33 | adantr | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> ( Y e. B -> Y e. U ) ) |
| 35 | 30 34 | mpd | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> Y e. U ) |
| 36 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 37 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 38 | 36 37 | rnghmf | |- ( F e. ( X RngHom Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) |
| 39 | 38 | adantr | |- ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) -> F : ( Base ` X ) --> ( Base ` Y ) ) |
| 40 | 39 | adantl | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> F : ( Base ` X ) --> ( Base ` Y ) ) |
| 41 | 37 36 | rnghmf | |- ( G e. ( Y RngHom X ) -> G : ( Base ` Y ) --> ( Base ` X ) ) |
| 42 | 41 | adantl | |- ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) -> G : ( Base ` Y ) --> ( Base ` X ) ) |
| 43 | 42 | adantl | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> G : ( Base ` Y ) --> ( Base ` X ) ) |
| 44 | 1 20 9 29 35 29 40 43 | rngcco | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( G o. F ) ) |
| 45 | 1 2 10 3 4 6 | rngcid | |- ( ph -> ( ( Id ` C ) ` X ) = ( _I |` E ) ) |
| 46 | 45 | adantr | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> ( ( Id ` C ) ` X ) = ( _I |` E ) ) |
| 47 | 44 46 | eqeq12d | |- ( ( ph /\ ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) ) -> ( ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) <-> ( G o. F ) = ( _I |` E ) ) ) |
| 48 | 47 | pm5.32da | |- ( ph -> ( ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` E ) ) ) ) |
| 49 | 19 48 | bitrd | |- ( ph -> ( ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` E ) ) ) ) |
| 50 | df-3an | |- ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
|
| 51 | df-3an | |- ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( G o. F ) = ( _I |` E ) ) <-> ( ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) ) /\ ( G o. F ) = ( _I |` E ) ) ) |
|
| 52 | 49 50 51 | 3bitr4g | |- ( ph -> ( ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( G o. F ) = ( _I |` E ) ) ) ) |
| 53 | 13 52 | bitrd | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X RngHom Y ) /\ G e. ( Y RngHom X ) /\ ( G o. F ) = ( _I |` E ) ) ) ) |