This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of lifted scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnascl.a | |- A = ( algSc ` W ) |
|
| rnascl.o | |- .1. = ( 1r ` W ) |
||
| rnascl.n | |- N = ( LSpan ` W ) |
||
| Assertion | rnascl | |- ( W e. AssAlg -> ran A = ( N ` { .1. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnascl.a | |- A = ( algSc ` W ) |
|
| 2 | rnascl.o | |- .1. = ( 1r ` W ) |
|
| 3 | rnascl.n | |- N = ( LSpan ` W ) |
|
| 4 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 5 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 6 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 7 | 1 4 5 6 2 | asclfval | |- A = ( y e. ( Base ` ( Scalar ` W ) ) |-> ( y ( .s ` W ) .1. ) ) |
| 8 | 7 | rnmpt | |- ran A = { x | E. y e. ( Base ` ( Scalar ` W ) ) x = ( y ( .s ` W ) .1. ) } |
| 9 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 10 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 11 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 12 | 11 2 | ringidcl | |- ( W e. Ring -> .1. e. ( Base ` W ) ) |
| 13 | 10 12 | syl | |- ( W e. AssAlg -> .1. e. ( Base ` W ) ) |
| 14 | 4 5 11 6 3 | lspsn | |- ( ( W e. LMod /\ .1. e. ( Base ` W ) ) -> ( N ` { .1. } ) = { x | E. y e. ( Base ` ( Scalar ` W ) ) x = ( y ( .s ` W ) .1. ) } ) |
| 15 | 9 13 14 | syl2anc | |- ( W e. AssAlg -> ( N ` { .1. } ) = { x | E. y e. ( Base ` ( Scalar ` W ) ) x = ( y ( .s ` W ) .1. ) } ) |
| 16 | 8 15 | eqtr4id | |- ( W e. AssAlg -> ran A = ( N ` { .1. } ) ) |