This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the algebra scalar lifting function. (Contributed by Mario Carneiro, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclfval.a | |- A = ( algSc ` W ) |
|
| asclfval.f | |- F = ( Scalar ` W ) |
||
| asclfval.k | |- K = ( Base ` F ) |
||
| asclfval.s | |- .x. = ( .s ` W ) |
||
| asclfval.o | |- .1. = ( 1r ` W ) |
||
| Assertion | asclfval | |- A = ( x e. K |-> ( x .x. .1. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclfval.a | |- A = ( algSc ` W ) |
|
| 2 | asclfval.f | |- F = ( Scalar ` W ) |
|
| 3 | asclfval.k | |- K = ( Base ` F ) |
|
| 4 | asclfval.s | |- .x. = ( .s ` W ) |
|
| 5 | asclfval.o | |- .1. = ( 1r ` W ) |
|
| 6 | fveq2 | |- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
|
| 7 | 6 2 | eqtr4di | |- ( w = W -> ( Scalar ` w ) = F ) |
| 8 | 7 | fveq2d | |- ( w = W -> ( Base ` ( Scalar ` w ) ) = ( Base ` F ) ) |
| 9 | 8 3 | eqtr4di | |- ( w = W -> ( Base ` ( Scalar ` w ) ) = K ) |
| 10 | fveq2 | |- ( w = W -> ( .s ` w ) = ( .s ` W ) ) |
|
| 11 | 10 4 | eqtr4di | |- ( w = W -> ( .s ` w ) = .x. ) |
| 12 | eqidd | |- ( w = W -> x = x ) |
|
| 13 | fveq2 | |- ( w = W -> ( 1r ` w ) = ( 1r ` W ) ) |
|
| 14 | 13 5 | eqtr4di | |- ( w = W -> ( 1r ` w ) = .1. ) |
| 15 | 11 12 14 | oveq123d | |- ( w = W -> ( x ( .s ` w ) ( 1r ` w ) ) = ( x .x. .1. ) ) |
| 16 | 9 15 | mpteq12dv | |- ( w = W -> ( x e. ( Base ` ( Scalar ` w ) ) |-> ( x ( .s ` w ) ( 1r ` w ) ) ) = ( x e. K |-> ( x .x. .1. ) ) ) |
| 17 | df-ascl | |- algSc = ( w e. _V |-> ( x e. ( Base ` ( Scalar ` w ) ) |-> ( x ( .s ` w ) ( 1r ` w ) ) ) ) |
|
| 18 | 16 17 3 | mptfvmpt | |- ( W e. _V -> ( algSc ` W ) = ( x e. K |-> ( x .x. .1. ) ) ) |
| 19 | fvprc | |- ( -. W e. _V -> ( algSc ` W ) = (/) ) |
|
| 20 | mpt0 | |- ( x e. (/) |-> ( x .x. .1. ) ) = (/) |
|
| 21 | 19 20 | eqtr4di | |- ( -. W e. _V -> ( algSc ` W ) = ( x e. (/) |-> ( x .x. .1. ) ) ) |
| 22 | fvprc | |- ( -. W e. _V -> ( Scalar ` W ) = (/) ) |
|
| 23 | 2 22 | eqtrid | |- ( -. W e. _V -> F = (/) ) |
| 24 | 23 | fveq2d | |- ( -. W e. _V -> ( Base ` F ) = ( Base ` (/) ) ) |
| 25 | base0 | |- (/) = ( Base ` (/) ) |
|
| 26 | 24 25 | eqtr4di | |- ( -. W e. _V -> ( Base ` F ) = (/) ) |
| 27 | 3 26 | eqtrid | |- ( -. W e. _V -> K = (/) ) |
| 28 | 27 | mpteq1d | |- ( -. W e. _V -> ( x e. K |-> ( x .x. .1. ) ) = ( x e. (/) |-> ( x .x. .1. ) ) ) |
| 29 | 21 28 | eqtr4d | |- ( -. W e. _V -> ( algSc ` W ) = ( x e. K |-> ( x .x. .1. ) ) ) |
| 30 | 18 29 | pm2.61i | |- ( algSc ` W ) = ( x e. K |-> ( x .x. .1. ) ) |
| 31 | 1 30 | eqtri | |- A = ( x e. K |-> ( x .x. .1. ) ) |